Skip to main content
Log in

Recent development in the synthesis of heterocycles by 2-naphthol-based multicomponent reactions

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

2-Naphthol or β-naphthol is an important starting material that has drawn great attention in various organic transformations because of its attributes, such as low cost, easy to handle and eco-friendliness. The electron-rich aromatic framework of 2-naphthol with multiple reactive sites allows it to be utilized in several kinds of organic reactions eventuated to several organic molecules with potent biological properties. Multicomponent reaction approach has been tremendously utilized to explore the synthetic utility of 2-naphthol for the construction of diverse N/O-containing heterocyclic framework. In this review, we summarize recent data pertaining to multicomponent reactions, wherein heterocyclic compounds are synthesized utilizing 2-naphthol as one of the starting materials. It is anticipated that this review will stimulate the researchers to design new multicomponent strategies complying with the Green Chemistry principles for the further exploitation of 2-naphthol for the rapid synthesis of versatile biologically relevant heterocycles.

Graphic abstract

This review provides a concise overview of the different 2-naphthol based multicomponent reactions utilized for the construction of diverse bioactive heterocyclic scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Fig. 2
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Fig. 3
Scheme 46
Scheme 47
Scheme 48
Scheme 49

Similar content being viewed by others

References

  1. Kalaria PN, Karad SC, Raval DK (2018) A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 158:917–936

    CAS  PubMed  Google Scholar 

  2. Desai N, Trivedi A, Pandit U, Dodiya A, Rao VK, Desai P (2016) Hybrid bioactive heterocycles as potential antimicrobial agents: a review. Mini Rev Med Chem 16:1500–1526

    CAS  PubMed  Google Scholar 

  3. Fouad MM, El-Bendary ER, Suddek GM, Shehata IA, El-Kerdawy MM (2018) Synthesis and in vitro antitumor evaluation of some new thiophenes and thieno[2,3-d]pyrimidine derivatives. Bioorg Chem 81:587–598

    CAS  PubMed  Google Scholar 

  4. Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR (2015) Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 20:16852–16891

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Siddiqui N, Andalip Bawa S, Ali R, Afzal O, Akhtar MJ, Azad B, Kumar R (2011) Antidepressant potential of nitrogen-containing heterocyclic moieties: an updated review. J Pharm Bioallied Sci 3:194–212

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sokolova AS, Yarovaya OI, Bormotov NI, Shishkina LN, Salakhutdinov NF (2018) Synthesis and antiviral activity of camphor-based 1,3-thiazolidin 4-one and thiazole derivatives as Orthopoxvirus-reproduction inhibitors. MedChemComm 9:1746–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goel A, Agarwal N, Singh FV, Sharon A, Tiwari P, Dixit M, Pratap R, Srivastava AK, Maulik PR, Ram VJ (2004) Antihyperglycemic activity of 2-methyl-3,4,5-triaryl-1H-pyrroles in SLM and STZ models. Bioorg Med Chem Lett 14:1089–1092

    CAS  PubMed  Google Scholar 

  8. Amir M, Javed SA, Kumar H (2007) Pyrimidine as anti-inflammatory agent: a review. Indian J Pharm Sci 69:337–343

    CAS  Google Scholar 

  9. Li W, Zhao SJ, Gao F, Lv ZS, Tu JY, Xu Z (2018) Synthesis and in vitro anti-tumor, anti-mycobacterial and anti-HIV activities of diethylene-glycol-tethered bis-isatin derivatives. ChemistrySelect 3:10250–10254

    CAS  Google Scholar 

  10. Zhao X, Chaudhry ST, Mei J (2017) Heterocyclic building blocks for organic semiconductors. Heterocyclic chemistry in the 21st Century—a Tribute to Alan Katritzky 121:133–171

  11. Khattab TA, Rehan MA (2018) Review on synthesis of nitrogen-containing heterocyclic dyes for textile fibers—part 2: fused heterocycles. Egypt J Chem 61:989–1018

    Google Scholar 

  12. Lamberth C, Dinges J (2012) Bioactive heterocyclic compound classes: agrochemicals. Wiley-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  13. Zhi S, Ma X, Zhang W (2019) Consecutive multicomponent reactions for the synthesis of complex molecules. Org Biomol Chem 17:7632–7650

    CAS  PubMed  Google Scholar 

  14. Ibarra IA, Islas-Jácome A, González-Zamora E (2018) Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem 16:1402–1418

    CAS  PubMed  Google Scholar 

  15. Tietze LF, Bsasche C, Gericke KM (2006) Domino reactions in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  16. Weber L, Illgen M, Almstetter M (1999) Discovery of new multi component reactions with combinatorial methods. Synlett 3:366–374

    Google Scholar 

  17. Herrera RP, Marqués-López E (2015) Multicomponent reactions: concepts and applications for design and synthesis. Wiley, Hoboken

    Google Scholar 

  18. Naya A, Sagara Y, Ohwaki K, Saeki T, Ichikawa D, Iwasawa Y, Noguchi K, Ohtake N (2001) Design, synthesis, and discovery of a novel CCR1 antagonist. J Med Chem 44:1429–1435

    CAS  PubMed  Google Scholar 

  19. Limsuwan S, Trip EN, Kouwen TR, Piersma S, Hiranrat A, Mahabusarakam W, Voravuthikunchai SP, Dijl JMV, Kayser O (2009) Rhodomyrtone: a new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine 1:645–651

    Google Scholar 

  20. Carr AA, Grunwell JF, Sill AD, Meyer DR, Sweet FW, Scheve BJ, Grisar JM, Fleming RW, Mayer GD (1976) Bis-basic-substituted polycyclic aromatic compounds. A new class of antiviral agents. 7. Bisalkamine esters of 9-oxoxanthene-2,7-dicarboxylic acid, 3,6-bis-basic ethers of xanthen-9-one, and 2,7-bis(aminoacyl)xanthen-9-ones, -xanthenes, and –thioxanthenes. J Med Chem 19:1142–1148

    CAS  PubMed  Google Scholar 

  21. Nishiyama T, Sakita K, Fuchigami T, Tsutomu Fukui T (1998) Antioxidant activities of fused heterocyclic compounds, xanthene-2,7-diols with BHT or catechol skeleton. Polym Degrad Stab 62:529–534

    CAS  Google Scholar 

  22. Zelefack F, Guilet D, Fabre N, Bayet C, Chevalle S, Ngouela S, Lenta BN, Valentin A, Tsamo E, Dijoux-Franca MG (2009) Cytotoxic and antiplasmodial xanthones from pentadesma butyracea. J Nat Prod 72:954–957

    CAS  PubMed  Google Scholar 

  23. Banerjee A, Mukherjee AK (1981) Chemical aspects of santalin as a histological stain. Stain Technol 56:83–85

    CAS  PubMed  Google Scholar 

  24. Knight CG, Stephens T (1989) Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochem J 258:683–687

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmad M, King TA, Do-Kyeong K, Cha BH, Jongmin L (2002) Performance and photostability of xanthene and pyrromethene laser dyes in sol–gel phases. J Phys D Appl Phys 35:1473–1476

    CAS  Google Scholar 

  26. Bigdeli MA, Heravi MM, Mahdavinia GH (2007) Silica supported perchloric acid (HClO4-SiO2): a mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14-Hdibenzo[a, j]xanthenes. J Mol Catal A Chem 275:25–29

    CAS  Google Scholar 

  27. Shaterian HR, Ghashang M, Hassankhani A (2008) One-pot synthesis of aryl 14H-dibenzo[a, j]xanthene leuco-dye derivatives. Dyes Pigments 76:564–568

    CAS  Google Scholar 

  28. Madhav JV, Reddy YT, Reddy PN, Reddy MN, Kuarma S, Crooks A, Rajitha B (2009) Cellulose sulfuric acid. An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl 14H-dibenzo[a.j]xanthenes under solvent-free conditions. J Mol Catal A Chem 304:85–87

    Google Scholar 

  29. Shaterian HR, Ghashang M, Mir N (2007) Aluminium hydrogensulfate as an efficient and heterogeneous catalyst for preparation of aryl 14H-dibenzo[a, j]xanthene derivatives under thermal and solvent-free condition. ARKIVOC 15:1–10

    Google Scholar 

  30. Heravi MM, Bakhtiari K, Daroogheha Z, Bamoharram FF (2007) Facile heteropolyacid-promoted synthesis of 14-substituted-14-H-dibenzo[a, j]xanthene derivatives under solvent-free conditions. J Mol Catal A Chem 272:99–101

    Google Scholar 

  31. Khaligh NG (2012) Poly(4-vinylpyridinium) hydrogen sulfate: an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions. Catal Sci Technol 2:2211–2215

    Google Scholar 

  32. Liu YH, Tao XY, Lei LQ, Zhang ZH (2009) Fluoroboric acid adsorbed on silica-gel catalyzed synthesis of 14-aryl-14Hdibenzo[a, j]xanthene derivatives. Synth Commun 39:580–589

    Google Scholar 

  33. Esmaeilpour M, Javidi J, Dehghani F, Dodeji FN (2014) Fe3O4@SiO2-imid-PMAn magnetic porous nanospheres as recyclable catalysts for the one-pot synthesis of 14-aryl- or alkyl-14Hdibenzo[a, j]xanthenes and 1,8-dioxooctahydroxanthene derivatives under various conditions. New J Chem 38:5453–5461

    CAS  Google Scholar 

  34. Prasad D, Nath M (2012) PEG-SO3H catalyzed, environmentally benign synthesis of 14-aryl 14Hdibenzo[a, j]xanthenes under solvent-free conditions. Catal Sci Technol 2:93–96

    CAS  Google Scholar 

  35. Naeimi H, Nazifi ZS (2014) Sulfonated diatomite as heterogeneous acidic nanoporous catalyst for synthesis of 14-aryl-14-H-dibenzo[a, j]xanthenes under green conditions. Appl Catal A Gen 477:132–140

    CAS  Google Scholar 

  36. Saghanezhad SJ, Nazari Y, Davod F (2016) Cucurbit[6]uril-OSO3H: a novel acidic nanocatalyst for the one-pot preparation of 14-aryl-14H-dibenzo[a, j]xanthenes and 1,8-dioxo-octahydro-xanthenes. RSC Adv 6:25525–25530

    CAS  Google Scholar 

  37. Ko S, Yao CF (2006) Heterogeneous catalyst: amberlyst-15 catalyzes the synthesis of 14-substituted-14H-dibenzo[a, j]xanthenes under solvent-free conditions. Tetrahedron Lett 47:8827–8829

    CAS  Google Scholar 

  38. Rezayati S, Erfani Z, Hajinasiri R (2015) Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a, j]xanthenes and 1,8-dioxo-octahydro-xanthenes. Chem Pap 69:536–543

    CAS  Google Scholar 

  39. Allameh S, Davoodni A, Khojastehnezhad A (2012) An efficient and eco-friendly synthesis of 14-aryl-14H-dibenzo[a, j]xanthenes using H4[SiW12O40] as a heterogeneous and reusable catalyst under solvent-free conditions. Chin Chem Lett 23:17–20

    CAS  Google Scholar 

  40. Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N (2009) Silica supported ammonium dihydrogen phosphate (NH4H2PO4/SiO2): a mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl-14-Hdibenzo[a, j]xanthenes. Chin Chem Lett 20:779–783

    CAS  Google Scholar 

  41. Rivera TS, Blanco MN, Pizzio LR, Romanelli GP (2012) Green catalytic synthesis of 14-aryl-14H-dibenzo[a, j]xanthenes using recyclable mesoporous zirconia modified with tungstophosphoric acid. Green Chem Lett Rev 5:433–437

    CAS  Google Scholar 

  42. Karimi AR, Zeinab DK, Marzie K (2014) Magnetite-sulfuric acid magnetic nanoparticles: preparation and application in synthesis of mono-, bis-, and tris-14Hdibenzo[a, j]xanthen-14-yl-arenes under solvent-free conditions. Synthesis 46:917–922

    Google Scholar 

  43. Fareghi-Alamdari R, Golestanzadeh M, Agend F, Zekri N (2013) Application of highly sulfonated single-walled carbon nanotubes. An efficient heterogeneous catalyst for the one-pot synthesis of 14-aryl-14H-dibenzo[a, j]xanthenes under solvent-free conditions. CR Chim 16:878–887

    CAS  Google Scholar 

  44. Naik MA, Sachdev D, Dubey A (2010) Sulfonic acid functionalized mesoporous SBA-15 for one-pot synthesis of substituted aryl-14H-dibenzoxanthenes and bis(indolyl)methanes. Catal Commun 11:1148–1153

    CAS  Google Scholar 

  45. Shaterian HR, Doostmohammadi R, Ghashang M (2008) Sodium hydrogen sulfate as effective and reusable heterogeneous catalyst for the one-pot preparation of 14H-[(Un)substituted phenyl]-dibenzo[a, j]xanthene leuco-dye derivatives. Chin J Chem 26:338–342

    CAS  Google Scholar 

  46. Baghbanian SM, Khanzad G, Vahdat SM, Tashakkorian H (2015) p-Sulfonic acid calix[4]arene as an efficient and reusable catalyst for the synthesis of acridinediones and xanthenes. Res Chem Intermed 41:9951–9966

    CAS  Google Scholar 

  47. Rajitha B, Sunil Kumar B, Thirupathi Reddy Y, Narsimha Reddy P, Sreenivasulu N (2005) Sulfamic acid: a novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a.j]xanthenes under conventional heating and microwave irradiation. Tetrahedron Lett 46:8691–8693

    CAS  Google Scholar 

  48. Shakibaei GI, Mirzaei P, Bazgir A (2007) Dowex-50 W promoted synthesis of 14-aryl-14H-dibenzo[a, j]xanthene and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Appl Catal A Gen 325:188–192

    CAS  Google Scholar 

  49. Kundu K, Nayak S (2014) Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo[a, j]xanthenes. J Ser Chem Soc 79:1051–1058

    CAS  Google Scholar 

  50. Patil SB, Bhat RP, Samant SD (2006) Cation-exchange resins: efficient heterogeneous catalysts for facile synthesis of dibenzoxanthene from β-naphthol and aldehydes. Synth Commun 36:2163–2168

    Google Scholar 

  51. Nagarapu L, Baseeruddin M, Kumari NV, Kantevari S, Rudradas AP (2007) Efficient synthesis of aryl-14H-dibenzo[a.j]xanthenes using NaHSO4–SiO2 or 5%WO3/ZrO2 as heterogeneous catalysts under conventional heating in a solvent-free media. Synth Commun 37:2519–2525

    CAS  Google Scholar 

  52. Nandi M, Mondal J, Sarkar K, Yamauchi Y, Bhaumik A (2011) Highly ordered acid functionalized SBA-15: a novel organocatalyst for the preparation of xanthenes. Chem Commun 47:6677–6679

    CAS  Google Scholar 

  53. Rahmatpour A (2011) An efficient, high yielding, and eco-friendly method for the synthesis of 14-aryl- or 14-alkyl-14H-dibenzo[a, j]xanthenes using polyvinylsulfonic acid as a recyclable Brønsted acid catalyst. Monatsh Chem 142:1259–1263

    CAS  Google Scholar 

  54. Mahdavinia GH, Rostamizadeh S, Amani AM, Emdadi Z (2008) Ultrasound-promoted greener synthesis of aryl-14-H-dibenzo[a, j]xanthenes catalyzed by NH4H2PO4/SiO2 in water. Ultrason Sonochem 16:7–10

    PubMed  Google Scholar 

  55. Mirjalili BBF, Bamoniri A, Akbari A (2011) Synthesis of 14-aryl or alkyl-14Hdibenzo[a, j]xanthenes promoted by Mg(HSO4)2. Chin Chem Lett 22:45–48

    CAS  Google Scholar 

  56. Karimi-Jaberi Z, Keshavarzi M (2010) Efficient one-pot synthesis of 14-substituted-14H-dibenzo[a, j]xanthenes using boric acid under solvent-free conditions. Chin Chem Lett 21:547–549

    CAS  Google Scholar 

  57. Khosropour AR, Khodaei MM, Moghannian H (2005) A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14-H-dibenzo[a, j]xanthenes catalyzed by pTSA in solution and solvent-free conditions. Synlett 6:955–958

    Google Scholar 

  58. Bigdeli MA, Heravi MM, Mahdavinia GH (2007) Wet cyanuric chloride catalyzed simple and efficient synthesis of 14-aryl- or -alkyl-14H-dibenzo[a, j]xanthenes. Catal Commun 8:1595–1598

    CAS  Google Scholar 

  59. Saini A, Kumar S, Sandhu JS (2006) A new LiBr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a, j]xanthenes and tetrahydrobenzo[b]pyrans under solvent-free conventional and microwave heating. Synlett 12:1928–1932

    Google Scholar 

  60. Wang B, Li P, Zhang Y, Wang L (2010) FeCl3-catalyzed condensation of 2-naphthol and aldehydes under solvent-free reaction conditions. An efficient and green alternative for the synthesis of 14-aryl(alkyl)-14-H dibenzo[a, j]xanthenes. Chin J Chem 28:2463–2468

    CAS  Google Scholar 

  61. Su W, Yang D, Jin C (2008) Yb(OTf)3 catalyzed condensation reaction of b-naphthol and aldehyde in ionic liquids: a green synthesis of aryl-14H-dibenzo[a, j]xanthenes. Tetrahedron Lett 49:3391–3394

    CAS  Google Scholar 

  62. Kumar A, Sharma S, Maury RA, Sarkar J (2010) Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. ACS Comb Sci 12:20–24

    CAS  Google Scholar 

  63. Cao Y, Yao C, Qin B, Zhang H (2013) Solvent-free synthesis of 14-aryl-14H-dibenzo[a, j]xanthenes catalyzed by recyclable and reusable iron(III) triflate. Res Chem Intermed 39:3055–3062

    CAS  Google Scholar 

  64. Soleimani E, Khodaei MM, Koshvandi ATK (2011) The efficient synthesis of 14-alkyl or aryl 14H-dibenzo[a, j]xanthenes catalyzed by bismuth(III) chloride under solvent-free conditions. Chin Chem Lett 22:927–930

    CAS  Google Scholar 

  65. Zolfigol MA, Moosavi-Zare AR, Arghavani-Hadi P, Zare A, Khakyzadeh V, Darvishi G (2012) WCl6 as an efficient, heterogeneous and reusable catalyst for the preparation of 14-aryl-14H-dibenzo[a,j]xanthenes with high TOF. RSC Adv 2:3618–3620

    CAS  Google Scholar 

  66. Bhattacharya AK, Rana KC, Mujahid M, Sehar IS, Saxena AK (2009) Synthesis and in vitro study of 14-aryl-14Hdibenzo[a.j]xanthenes as cytotoxic agents. Bioorg Med Chem Lett 19:5590–5593

    CAS  PubMed  Google Scholar 

  67. Mosaddegh E, Islami MR (2008) Synthesis of aryl 14H-dibenzo[a, j]xanthenes using zirconium(IV) oxide chloride as a catalyst. Org Prep Proc Int 40:586–589

    CAS  Google Scholar 

  68. Selvam NP, Shanthi G, Perumal PT (2007) Ceric-sulfate-catalyzed synthesis of 14-aryl- or 14-alkyl-14H-dibenzo[aj]xanthene under conventional heating and microwave irradiation. Can J Chem 85:989–995

    CAS  Google Scholar 

  69. Kantevari S, Chary MV, Das APR, Vuppalapati SVN, Lingaiah N (2008) Catalysis by an ionic liquid: highly efficient solvent-free synthesis of aryl-14-H-dibenzo[a.j]xanthenes by molten tetrabutylammonium bromide under conventional and microwave heating. Catal Commun 9:1575–1578

    CAS  Google Scholar 

  70. Zarei A, Hajipour AR, Khazdooz L (2010) The one-pot synthesis of 14-aryl or alkyl-14Hdibenzo[a,j]xanthenes catalyzed by P2O5/Al2O3 under microwave irradiation. Dyes Pigments 85:133–138

    CAS  Google Scholar 

  71. Madhav JV, Kumar VN, Someshwar P, Rajitha B (2008) A simple and convenient method for the synthesis of Aryl-14 H -dibenzo[a, j]xanthenes by using dipyridine copper chloride as Lewis acid catalyst. J Heterocycl Chem 45:119–121

    CAS  Google Scholar 

  72. Madhav JV, Kuarm BS, Rajitha B (2008) Dipyridine cobalt chloride: a novel and efficient catalyst for the synthesis of 14-aryl 14H-dibenzo[a, j]xanthenes under solvent-free conditions. ARKIVOC 2:204–209

    Google Scholar 

  73. Ding F-Q, An LT, Zou JP (2007) Iodine catalyzed microwave-assisted synthesis of 14-Aryl(Alkyl)-14H-dibenzo[a,j]xanthenes. Chin J Chem 25:645–648

    CAS  Google Scholar 

  74. Das B, Ravikanth B, Ramu R, Laxminarayana K, Rao BV (2006) Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo[a, j]xanthenes. J Mol Catal A Chem 255:74–77

    CAS  Google Scholar 

  75. Mirjalili BBF, Bamoniri A, Akbari A (2008) BF3·SiO2: an efficient alternative for the synthesis of 14-aryl or alkyl-14H-dibenzo[a, j]xanthenes. Tetrahedron Lett 49:6454–6456

    CAS  Google Scholar 

  76. Kumar PS, Kumar BS, Rajitha B, Reddy PN, Sreenivasulu N, Reddy YT (2006) A novel one pot synthesis of 14-aryl-14H-dibenzo[a, j]xanthenes catalyzed by SelectfluorTM under solvent free conditions. ARKIVOC 12:46–50

    Google Scholar 

  77. Bansal P, Chaudhary GR, Kaur N, Mehta SK (2015) An efficient and green synthesis of xanthene derivatives using CuS quantum dots as a heterogeneous and reusable catalyst under solvent free conditions. RSC Adv 5:8205–8209

    CAS  Google Scholar 

  78. Chaudhary GR, Bansal P, Kaur N, Mehta SK (2014) Recyclable CuO nanoparticles as heterogeneous catalysts for the synthesis of xanthenes under solvent free conditions. RSC Adv 4:49462–49470

    CAS  Google Scholar 

  79. Safaei-Ghomi J, Ghasemzadeh MA (2012) Zinc oxide nanoparticles, a highly efficient and readily recyclable catalyst for the synthesis of xanthenes. Chin Chem Lett 23:1225–1229

    CAS  Google Scholar 

  80. Haeri HH, Rezayati S, Nezhad ER, Darvishi H (2016) Fe2+ supported on hydroxyapatite-core-shell-γ-Fe2O3 nanoparticles: efficient and recyclable green catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthene derivatives. Res Chem Intermed 42:4773–4784

    CAS  Google Scholar 

  81. Albadi A, Iravani N, Khoshakhlagh M (2012) A new, green and recyclable poly(4-vinylpyridine)-supported copper iodide nanoparticles catalyst for the synthesis of aryl-14H-dibenzo[a, j]xanthenes. Iran J Catal 2:85–89

    Google Scholar 

  82. Tabatabaeian K, Zanjanchi MA, Mamaghani M, Dadashi A (2015) Ruthenium anchored on multi-walled carbon nanotubes: an efficient and reusable catalyst for the synthesis of xanthenes. Res Chem Intermed 42:5049–5067

    Google Scholar 

  83. Shirini F, Abedini M, Seddighi M, Jolodar OG, Safarpoor M, Langroodi N, Zamani S (2014) Introduction of a new bi-SO3H ionic liquid based on 2,2-bipyridine as a novel catalyst forthe synthesis of various xanthene derivatives. RSC Adv 4:63526–63532

    CAS  Google Scholar 

  84. Shirini F, Yahyazadeh A, Mohammadi K (2014) One-pot synthesis of various xanthene derivatives using ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable catalyst under solvent free conditions. Chin Chem Lett 25:341–347

    CAS  Google Scholar 

  85. Gong K, Fang D, Wang HL, Zhou XL, Liu ZL (2008) The one-pot synthesis of 14-alkyl- or aryl-14H-dibenzo[a, j]xanthenes catalyzed by task-specific ionic liquid. Dyes Pigments 80:30–33

    Google Scholar 

  86. Das PJ, Das J (2015) Secondary amine based ionic liquid: an efficient catalyst for solvent free one pot synthesis of xanthenes and benzoxanthenes. RSC Adv 5:11745–11752

    CAS  Google Scholar 

  87. Dutta AK, Gogoi P, Borah R (2012) Synthesis of dibenzoxanthene and acridine derivatives catalyzed by 1,3-disulphonic acid imidazolium carboxylate ionic liquids. RSC Adv 4:41287–41291

    Google Scholar 

  88. Maleki B, Akbarzadeh E, Babaee S (2015) New basic ionic liquid from ethan-1,2-diylbis(hydrogen sulfate) and DBU (1,8- diazobicyclo[5.4.0]undec-7-ene) as an efficient catalyst for one-pot synthesis of xanthene derivatives. Dyes Pigments 123:222–234

    CAS  Google Scholar 

  89. Rahmati A (2010) A rapid and efficient method for the synthesis of 14H-dibenzo[a,j]xanthenes, aryl-5Hdibenzo[b.i]xanthene-5,7,12,14-(13H)-tetraones, and 1,8-dioxo-octahydroxanthenes by acidic ionic liquid. Chin Chem Lett 21:761–764

    CAS  Google Scholar 

  90. Rad-Moghadam K, Azimi SC (2012) Mg(BF4)2 doped in [BMIm][BF4]. A homogeneous ionic liquid-catalyst for efficient synthesis of 1,8-dioxo-octahydroxanthenes, decahydroacridines and 14-aryl-14-H-dibenzo[a, j]xanthenes. J Mol Catal A Chem 363–364:465–469

    Google Scholar 

  91. Wu H, Chen XM, Wan Y, Xin HQ, Xu HH, Yue CH, Ma R (2009) Synthesis and luminescence of 14-Aryl- or Alkyl-14H-dibenzo[a, j]xanthenes Catalyzed by 2–1′-Methylimidazolium-3-yl-1-ethyl Sulfate. Synth Commun 39:3762–3771

    CAS  Google Scholar 

  92. Khurana JM, Lumb A, Pandey A, Magoo D (2012) Green approaches for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in aqueous media and under microwave irradiation in solventless conditions. Synth Commun 42:1796–1803

    CAS  Google Scholar 

  93. Liu YH, Li L (2012) Methanesulfonic acid-catalyzed one-pot synthesis of 12-aryl- or 12-alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives. J Heterocycl Chem 49:861–864

    CAS  Google Scholar 

  94. Wang HJ, Ren XQ, Zhang YY, Zhang ZH (2009) Synthesis of 12-aryl or 12-alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by dodecatungstophosphoric acid. J Braz Chem Soc 20:1939–1943

    CAS  Google Scholar 

  95. Li JT, Li YW, Song YL (2012) Efficient synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation. Synth Commun 42:2161–2170

    CAS  Google Scholar 

  96. Khurana JM, Magoo D (2009) pTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions. Tetrahedron Lett 50:4777–4780

    CAS  Google Scholar 

  97. Rama V, Kanagaraj K, Pitchumani K (2012) A multicomponent, solvent-free, one-pot synthesis of benzoxanthenones catalyzed by HY zeolite: their anti-microbial and cell imaging studies. Tetrahedron Lett 53:1018–1024

    CAS  Google Scholar 

  98. Bahrami K, Khodaei MM, Roostaei M (2014) The preparation and characterization of boehmite nanoparticles-TAPC: a tailored and reusable nanocatalyst for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones. New J Chem 38:5515–5520

    CAS  Google Scholar 

  99. Sadeghi B, Hassanabadi A, Taghvatalab E (2011) Nanoparticle silica supported sulfuric acid(NPs SiO2-H2SO4): a solid phase acidic catalyst for the one-pot synthesis of benzo[a]xanthen-11-one derivatives. J Chem Res 35:707–708

    CAS  Google Scholar 

  100. Maleki B, Barzegar S, Sepehr Z, Kermanian M, Tayebee R (2012) A novel polymeric catalyst for the one-pot synthesis of xanthene derivatives under solvent-free conditions. J Iran Chem Soc 9:757–765

    CAS  Google Scholar 

  101. Moghanian H, Mobinikhaledi A, Deinavizadeh M (2015) Efficient, one-pot synthesis of xanthene derivatives using boron sulphonic acid as a solid heterogeneous catalyst under solvent free conditions. Res Chem Intermed 41:4387–4394

    CAS  Google Scholar 

  102. Karimi N, Oskooie HA, Heravi MM, Tahershamsi L (2011) Caro’s acid-silica gel-catalyzed one-pot synthesis of 12-aryl-8,9,10,12- tetrahydrobenzo[a]xanthen-11-ones. Synth Commun 41:307–312

    CAS  Google Scholar 

  103. Heravi MM, Hashemi E, Beheshtiha YS, Kamjou K, Toolabi M, Hosseintash N (2014) Solvent-free multicomponent reactions using the novel N-sulfonic acid modified poly(styrene-maleic anhydride) as a solid acid catalyst. J Mol Catal A Chem 392:173–180

    CAS  Google Scholar 

  104. Vahdat S, Khaksar S (2015) Polyvinylpolypyrrolidone supported triflic acid (PVPP.OTf); an efficient and recyclable heterogeneous catalyst for one-pot condensation of b-naphthol, aldehydes, and cyclic 1,3-dicarbonyl compounds. Res Chem Intermed 41:4177–4186

    CAS  Google Scholar 

  105. Shaterian HR, Mohammadnia M (2013) Nanocrystalline TiO2-HClO4 catalyzed three-component preparation of derivatives of 1-amidoalkyl-2-naphthol, 1-carbamato-alkyl-2-naphthol, 1-(a-aminoalkyl)-2-naphthol, and 12-aryl-8,9,10,12-tetrahydrobenzo[a]-xanthen-11-one. Res Chem Intermed 39:4221–4237

    CAS  Google Scholar 

  106. Zhang ZH, Wang HJ, Ren XQ, Zhang YY (2009) A facile and efficient method for synthesis of xanthone derivatives catalyzed by HBF4/SiO2 under solvent-free conditions. Monatsh Chem 140:1481–1483

    CAS  Google Scholar 

  107. Chen W, Peng XW, Zhong LX, Li Y, Sun RC (2015) Lignosulfonic acid: a renewable and effective biomass-based catalyst for multicomponent reactions. ACS Sustain Chem Eng 3:1366–1373

    CAS  Google Scholar 

  108. Pawar PB, Jadhav SD, Deshmukh MB, Patil S (2014) Citric acid as a mild and inexpensive organocatalyst for synthesis of tetrahydrobenzo[a]xanthen-11-ones and dibenzo[a, j]xanthenes under solvent-free condition. Ind J Chem 14:1185–1193

    Google Scholar 

  109. Shaterian HR, Rigi F (2014) New applications of cellulose-SO3H as a bio-supported and biodegradable catalyst for the one-pot synthesis of some three-component reactions. Res Chem Intermed 40:2983–2999

    CAS  Google Scholar 

  110. Wan Y, Zhang XX, Wang C, Zhao LL, Chen LF, Liu GX (2013) The first example of glucose-containing Brønsted acid synthesis and catalysis: efficient synthesis of tetrahydrobenzo[a]xanthens and -tetrahydrobenzo[a]acridines in water. Tetrahedron 69:3947–3950

    CAS  Google Scholar 

  111. Ma J, Zhong L, Peng X, Sun R (2016) D-Xylonic acid: a solvent and an effective biocatalyst for a three-component reaction. Green Chem 18:1738–1750

    CAS  Google Scholar 

  112. Wang RZ, Zhang LF, Cui ZS (2009) Iodine-catalyzed synthesis of 12-aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one derivatives via multicomponent reaction. Synth Commun 39:2101–2107

    CAS  Google Scholar 

  113. Sun XJ, Zhou JF, Zhao PS (2011) Molecular iodine-catalyzed one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under microwave irradiation. J Heterocycl Chem 48:1347–1350

    CAS  Google Scholar 

  114. Foroughifar N, Mobinikhaledi A, Moghanian H, Mozafari R, Esfahani HRM (2011) Ammonium chloride-catalyzed one-pot synthesis of tetrahydrobenzo[a]xanthen-11-one derivatives under solvent-free conditions. Synth Commun 41:2663–2673

    CAS  Google Scholar 

  115. Kidwai M, Mishra A, Jahan NK (2012) A novel method for the synthesis of tetrahydrobenzo[a]xanthen-11-one derivatives using cerium(III) chloride as a highly efficient catalyst. C R Chim 15:324–330

    CAS  Google Scholar 

  116. Nandi GC, Samai S, Kumar R, Singh MS (2009) An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron 65:7129–7134

    CAS  Google Scholar 

  117. Li J, Tang W, Lu L, Su W (2008) Strontium triflate catalyzed one-pot condensation of b-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds. Tetrahedron Lett 49:7117–7120

    CAS  Google Scholar 

  118. Sharma RK, Khajuria R, Kapoor KK (2014) Alum-catalyzed domino synthesis of 12-substituted-8,9,10,12-tetrahydrobenzoxanthen-11-ones under Solvent-free conditions. Synth Commun 44:3538–3551

    CAS  Google Scholar 

  119. Tabatabaeian K, Khorshidi A, Mamaghani M, Dadashi A, Jalali MK (2011) One-pot synthesis of tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by ruthenium chloride hydrate as a homogeneous catalyst. Can J Chem 89:623–627

    CAS  Google Scholar 

  120. Mirjalili FBB, Bamoniri A, Zamani L (2012) Nano-TiCl4/SiO2: an efficient and reusable catalyst for the synthesis of tetrahydrobenzo[a]xanthen-11-ones. Lett Org Chem 9:338–343

    CAS  Google Scholar 

  121. Farhad Shirini F, Akbari-Dadamahaleh S, Mohammad-Khah A, Aliakbar AR (2013) Rice husk: a mild, efficient, green and recyclable catalyst for the synthesis of 12-Aryl-8, 9, 10, 12-tetrahydro[a]xanthene-11-ones and quinoxaline derivatives. C R Chim 16:207–216

    Google Scholar 

  122. Taghavi-Khorasani F, Davoodnia A (2015) A fast and green method for synthesis of tetrahydrobenzo[a]xanthene-11-ones using Ce(SO4)2·4H2O as a novel, reusable, heterogeneous catalyst. Res Chem Intermed 41:2415–2425

    CAS  Google Scholar 

  123. Oskooie HA, Heravi MM, Karimi N, Kohansal G (2011) Cu/SiO2-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones under solvent-free conditions. Synth Commun 41:2763–2768

    CAS  Google Scholar 

  124. Kaur B, Parmar A, Kumar H (2012) Manganese Perchlorate-catalyzed greener synthesis of 12-aryl or 12-alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives under ultrasonication. Synth Commun 42:447–453

    CAS  Google Scholar 

  125. Gao S, Tsai CH, Yao CF (2009) A simple and green approach for the synthesis of tetrahydrobenzo[a]-xanthen-11-one derivatives using tetrabutylammonium fluoride in water. Synlett 6:949–954

    Google Scholar 

  126. Akondi AM, Kantam ML, Trivedi R, Sreedhar B, Buddana SK, Prakasham RS, Bhargava S (2014) Formation of benzoxanthenones and benzochromenones via cerium-impregnated-MCM-41 catalyzed, solvent-free, three component reaction and their biological evaluation as anti-microbial agents. J Mol Catal A Chem 386:49–60

    CAS  Google Scholar 

  127. Mohammadi R, Eidi E, Ghavami M, Kassaee MZ (2014) Chitosan synergistically enhanced by successive Fe3O4 and silver nanoparticles as a novel green catalyst in one-pot, three component synthesis of tetrahydrobenzo[a]xanthene-11-ones. J Mol Catal A Chem 393:309–316

    CAS  Google Scholar 

  128. Khazaei A, Zolfigol MA, Moosavi-Zare AR, Zare A, Khojasteh M, Asgari Z, Khakyzadeh V, Khalafi-Nezhad A (2012) Organocatalyst trityl chloride efficiently promoted the solvent-free synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]-xanthen-11-ones by in situ formation of carbocationic system in neutral media. Catal Commun 20:54–57

    CAS  Google Scholar 

  129. Iniyavan P, Sarveswari S, Vijayakumar V (2015) Microwave-assisted clean synthesis of xanthenes and chromenes in [bmim][PF6] and their antioxidant studies. Res Chem Intermed 41:7413–7426

    CAS  Google Scholar 

  130. Fang D, Yang JM, Cao YF (2013) Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-ones catalyzed by biodegradable ionic liquid. Res Chem Intermed 39:1745–1751

    CAS  Google Scholar 

  131. Kundu D, Majee A, Hajra A (2011) Task-specific ionic liquid-catalyzed efficient microwave-assisted synthesis of 12-alkyl or aryl-8,9,10,12-tetrahydrobenzo [a]xanthen-11-ones ones under solvent-free conditions. Green Chem Lett Rev 4:205–209

    CAS  Google Scholar 

  132. Zolfigol MA, Khakyzadeh V, Moosavi-Zare AR, Zare A, Azimi SB, Asgari Z, Hasaninejad A (2012) Preparation of various xanthene derivatives over sulfonic acid-functionalized imidazolium salts (SAFIS) as novel, highly efficient and reusable catalysts. C R Chim 15:719–736

    CAS  Google Scholar 

  133. Singh H, Kumari S, Khurana JM (2014) A new green approach for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives using task specific acidic ionic liquid [NMP]H2PO4. Chin Chem Lett 25:1336–1340

    CAS  Google Scholar 

  134. Heydari R, Shahrekipour F (2015) One-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones by using of neutral and efficient organocatalysts under solvent-free conditions. Res Chem Intermed 41:4581–4586

    CAS  Google Scholar 

  135. Yadav S, Khurana JM (2013) An efficient synthesis of novel 3-hydroxy-12-arylbenzo[a]xanthen-11-ones and 5,12-diarylxantheno[2,1-a]xanthene-4,12-diones using pTSA in [bmim]BF4. Can J Chem 91:698–703

    CAS  Google Scholar 

  136. Khurana JM, Nand B, Sneha (2011) An efficient and convenient approach for the synthesis of novel 2-hydroxy-12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-ones using p-toluenesulfonic acid in ethanol and ionic liquid. J Heterocycl Chem 48:1388–1392

    CAS  Google Scholar 

  137. Khurana JM, Chaudhary A, Lumb A, Nand B (2012) Efficient one-pot syntheses of dibenzo[a, i]xanthene-diones and evaluation of their antioxidant activity. Can J Chem 90:739–746

    CAS  Google Scholar 

  138. Wu L, Zhang J, Fang L, Yang C, Yan F (2010) Silica chloride catalyzed synthesis of 14-aryl-14H-dibenzo[a, i]xanthene-8,13-diones. Dyes Pigments 86:93–96

    CAS  Google Scholar 

  139. Rahmatpour A (2013) Polystyrene-supported GaCl3 as a highly efficient and reusable heterogeneous Lewis acid catalyst for the three-component synthesis of benzoxanthene derivatives. Monatsh Chem 144:1205–1212

    CAS  Google Scholar 

  140. Srinivas V, Rao VR (2012) Facile, one-pot, three-component synthesis of benzo[a]naphthacene-8,13-diones. Synth Commun 42:388–393

    CAS  Google Scholar 

  141. Liu D, Xu D, Gao J, Zhou S (2014) p-Toluenesulfonic acid catalyzed synthesis of 14-aryl-14H-dibenzo[a, i]xanthene-8,13-dioness. Chem Sci Trans 3:455–459

    Google Scholar 

  142. Ghasemzadeh MA, Azimi-Nasrabad M (2016) Nano-Fe3O4-encapsulated silica particles bearing sulfonic acid groups as a magnetically separable catalyst for the green and efficient synthesis of 14-aryl-14H-dibenzo[a, i]xanthene-8,13-dione derivatives. Res Chem Intermed 42:1057–1069

    CAS  Google Scholar 

  143. Safaei-Ghomi J, Eshteghal F (2017) Nano-Fe3O4/PEG/succinic anhydride: a novel and efficient catalyst for the synthesis of benzoxanthenes under ultrasonic irradiation. Ultrason Sonochem 38:488–495

    CAS  PubMed  Google Scholar 

  144. Yang LM, Yin ZK, Wu LQ (2012) H4SiW12O40: an efficient catalyst for the synthesis of new spiro[dibenzo[a, i]xanthene-14,30-indoline]-20,8,13-triones. Chin Chem Lett 23:265–268

    CAS  Google Scholar 

  145. Yang X, Yang L, Wu L (2012) [Hmim][HSO4]: an efficient and reusable catalyst for the synthesis of spiro[dibenzo[a, i] xanthene-14,3′-indoline]-2′,8,13-triones and spironaphthopyran[2,3-d]pyrimidine-5,3′-indolines. Bull Korean Chem Soc 33:714–716

    CAS  Google Scholar 

  146. Kefayati H, Bazargard SJ, Vejdansefat P, Shariati S, Kohankar AM (2016) Fe3O4@MCM-41-SO3H@[HMIm][HSO4]: an effective magnetically separable nanocatalyst for the synthesis of novel spiro[benzoxanthene-indoline]diones. Dyes Pigm 125:309–315

    CAS  Google Scholar 

  147. Mohr SJ, Chirigos MA, Fuhrman FS, Pryor JW (1975) Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor. Cancer Res 35:3750–3754

    CAS  PubMed  Google Scholar 

  148. Dell C, Smith C Antiproliferative derivatives of 4H-naphtho [1, 2-b] Pyran and process for their preparation. EP537949. 1993:21

  149. Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, Weston H, Scicinski J, Merritt A, Whittington A (1998) Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. J Med Chem 41:787–789

    CAS  PubMed  Google Scholar 

  150. Kumar D, Reddy VB, Sharad S, Dube U, Kapur S (2009) A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-Pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur J Med Chem 44:3805–3809

    CAS  PubMed  Google Scholar 

  151. Chattapadhyay TK, Dureja PJ (2006) Antifungal activity of 4-methyl-6-alkyl-2H-pyran-2-ones. J Agric Food Chem 54:2129–2133

    CAS  PubMed  Google Scholar 

  152. Mineeva IV (2015) Cyclopropanol methodology in the synthesis of (4R)- and (4S)-4-methyltetrahydro-2H-pyran-2-ones. Application in the synthesis of insect pheromones with methyl-branched carbon skeleton. Russ J Org Chem 51:341–351

    CAS  Google Scholar 

  153. Bianchi G, Tava A (1987) Synthesis of (2R)-(+)-2,3-Dihydro-2,6-dimethyl-4H-Pyran-4-one, a homologue of pheromones of a species in the Hepialidae family. Agric Biol Chem 51:2001–2002

    CAS  Google Scholar 

  154. Armesto D, Horspool WM, Martin N, Ramos A, Seoane C (1989) Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-Pyrans. J Org Chem 54:3069–3072

    CAS  Google Scholar 

  155. Awuah SG, Polreis J, Prakash J, Qiao Q, You Y (2011) New pyran dyes for dye-sensitized solar cells. J Photochem Photobio A Chem 224:116–122

    CAS  Google Scholar 

  156. Ahmed MM, El-Saghier MB, Naili BK, Rammash NA, Saleh Khaled MK (2007) Synthesis and antibacterial activity of some new fused chromenes. ARKIVOC 16:83–91

    Google Scholar 

  157. Tilak R, Richa KB, Rakesh KS, Vivek G, Deepak S, Mohan PSI (2009) Mechanism of unusual formation of 3-(5-phenyl-3H-[1,2,4]dithiazol-3yl)chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides and their antimicrobial evaluation. Eur J Med Chem 44:3209–3216

    Google Scholar 

  158. Okram MS, Nepram SD, Dhanaraj ST, Gurumayum JS (2010) Novel 3alkanoyl/aroyl/heteroaroyl-2H-chromene-2-thiones: synthesis and evaluation of their antioxidant activities. Eur J Med Chem 45:2250–2257

    Google Scholar 

  159. Kumar A, Maurya RA, Sharma S, Ahmad P, Singh AB, Bhatia G, Srivastava AK (2009) Pyranocoumarins: a new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg Med Chem Lett 19:6447–6451

    CAS  PubMed  Google Scholar 

  160. Mehrabi H, Kamali N (2012) Efficient and eco-friendly synthesis of 2-amino-4H-chromene derivatives using catalytic amount of tetrabutylammonium chloride (TBAC) in water and solvent-free conditions. J Iran Chem Soc 9:599–605

    CAS  Google Scholar 

  161. Eshghi H, Damavandi S, Zohuri GH (2011) Efficient one-pot synthesis of 2-amino-4H-chromenes catalyzed by ferric hydrogen sulfate and Zr-Based Catalysts of FI. Synth React Inorg Met Org Nano-Met Chem 41:1067–1073

    CAS  Google Scholar 

  162. Meng XY, Wang HJ, Wang CP, Zhang ZH (2011) Disodium hydrogen phosphate as an efficient and cheap catalyst for the synthesis of 2-aminochromenes. Synth Commun 41:3477–3484

    CAS  Google Scholar 

  163. Shekhar AC, Kumar AR, Sathaiah G, Raju K, Rao PS, Sridhar M, Sridhar B (2012) An efficient one-pot synthesis of substituted 1h-naphtho[2,1-b]pyrans and 4H-1-Benzopyrans (Chromenes) under solvent-free microwave-irradiation conditions. Helv Chim Acta 95:502–508

    CAS  Google Scholar 

  164. Sadjadi S, Heravi MM, Zadsirjan V, Ebrahimizadeh M (2017) SBA-15@methenamine-HPA: a novel, simple, and efficient catalyst for one-pot three-component synthesis of 2-amino-4H-chromene derivatives in aqueous medium. Res Chem Intermed 43:5467–5483

    CAS  Google Scholar 

  165. Sadeghi B, Zarepour I (2015) Nano-sawdust–BF3 as a new, cheap, and effective nano catalyst for one-pot synthesis of 2-amino benzo[h]chromene derivatives. J Nanostruct Chem 5:305–311

    CAS  Google Scholar 

  166. Sunil Kumar B, Srinivasulu N, Udupi RH, Rajitha B, Thirupathi Reddy Y, Narsimha Reddy P, Kumar PS (2006) Efficient synthesis of benzo[g]-and benzo[h]chromene derivatives by one-pot three-component condensation of aromatic aldehydes with active methylene compounds and naphthols. Russ J Org Chem 42:1813–1815

    Google Scholar 

  167. Balalaie S, Ramezanpour S, Bararjanian M, Gross JH (2008) DABCO-catalyzed efficient synthesis of naphthopyran derivatives via one-pot three-component condensation reaction at room temperature. Synth Commun 38:1078–1089

    CAS  Google Scholar 

  168. Heravi MM, Hosseinnejad T, Faghihi Z, Shiri M, Vazinfard M (2017) Synthesis of 2-amino-3-cyano 4-H-chromenes containing quinoline in water: computational study on substituent effects. J Iran Chem Soc 14:823–832

    CAS  Google Scholar 

  169. Mobinikhaledi A, Moghanian H, Sasani F (2011) Synthesis and reactivity in inorganic, microwave-assisted one-pot synthesis of 2-amino-2-chromenes using piperazine as a catalyst under solvent-free conditions. Synth React Inorg Met Org Nano-Met Chem 41:262–265

    CAS  Google Scholar 

  170. Dekamin MG, Eslami M (2014) Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans under mechanochemical ball milling. Green Chem 16:4914–4921

    CAS  Google Scholar 

  171. Dekamin MG, Alikhani M, Javanshir S (2016) Organocatalytic clean synthesis of densely functionalized 4H-pyrans by bifunctional tetraethylammonium 2-(carbamoyl)benzoate using ball milling technique under mild conditions. Green Chem Lett Rev 9:96105

    Google Scholar 

  172. Kundu SK, Bhaumik A (2015) A triazine-based porous organic polymer: a novel heterogeneous basic organocatalyst for facile one-pot synthesis of 2-amino-4H-chromenes. RSC Adv 5:32730–32739

    CAS  Google Scholar 

  173. Saha A, Payra S, Banerjee S (2015) On water synthesis of pyran–chromenes via a multicomponent reactions catalyzed by fluorescent t-ZrO2 nanoparticles. RSC Adv 5:101664–101671

    CAS  Google Scholar 

  174. Albadi J, Alihoseinzadeh A, Mansournezhad A, Kaveiani L (2015) Novel metal oxide of CuO–ZnO nanocatalyst efficiently catalyzed the synthesis of 2-amino-4H-chromenes in water. Synth Commun 45:485–493

    CAS  Google Scholar 

  175. Tajbakhsh M, Kariminasab M, Alinezhad H, Hosseinzadeh R, Rezaee P, Tajbakhsh M, Gazvini HJ, Azizi Amiri M (2012) Nano silicabonded aminoethylpiperazine: a highly efficient and reusable heterogeneous catalyst for the synthesis of 4Hchromene and 12Hchromeno[2,3d]pyrimidine derivatives. J Iran Chem Soc 12:1405–1414

    Google Scholar 

  176. Karmakar B, Nandi R (2016) A green route towards substituted 2-amino-4H-chromenes catalyzed by an organobase (TBD) functionalized mesoporous silica nanoparticle without heating. Res Chem Intermed. https://doi.org/10.1007/s11164-016-2755-9

    Article  Google Scholar 

  177. Maleki B, Sheikh S (2015) Nano polypropylenimine dendrimer (DAB-PPI-G1): as a novel nano basic-polymer catalyst for one-pot synthesis of 2-amino-2-chromene derivatives. RSC Adv 5:42997–43005

    CAS  Google Scholar 

  178. Jiang L, Yu H (2014) Enzymatic promiscuity: “Amano” lipase AS-catalysed synthesis of naphthopyran derivatives in anhydrous media. Chem Res Chin 30:396–399

    CAS  Google Scholar 

  179. Shinde S, Damate S, Morbale S, Patil M, Patil SS (2017) Aegle marmelos in heterocyclization: greener, highly efficient, one-pot three-component protocol for the synthesis of highly functionalized 4H-benzochromenes and 4H-chromenes. RSC Adv 7:7315–7328

    CAS  Google Scholar 

  180. Qareaghaj OH, Mashkouri S, Naimi-Jamal MR, Kaupp G (2014) Ball milling for the quantitative and specific solvent-free Knoevenagel condensation + Michael addition cascade in the synthesis of various 2-amino-4-aryl-3-cyano-4H-chromenes without heating. RSC Adv 4:48191–48201

    CAS  Google Scholar 

  181. Naimi-Jamal MR, Mashkouri S, Sharifi A (2010) An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold. Mol Div 14:473–477

    CAS  Google Scholar 

  182. Sheibani H, Saidi K, Abbasnejad M, Derakhshani A, Mohammadzadeh I (2016) A convenient one-pot synthesis and anxietic activity of 3-cyano-2(1H)iminopyridines and halogen derivatives of benzo[h]chromenes. Arabian J Chem 9:S901–S906

    CAS  Google Scholar 

  183. Wang X-S, Shi DQ, Yu HZ, Wang GF, Tu SG (2004) Synthesis of 2aminochromene derivatives catalyzed by KF/Al2O3. Synth Commun 34:509–514

    CAS  Google Scholar 

  184. Albadi J, Mansournezhad A, Darvishi-Paduk M (2013) Poly(4-vinylpyridine): as a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives. Chin Chem Lett 24:208–210

    CAS  Google Scholar 

  185. Shaterian HR, Mohammadnia M (2013) Mild preparation of 2-amino-3-cyano-4-aryl-4H-benzo[h]chromenes and 2-amino-3-cyano-1-aryl-1H-benzo[f]chromenes, under solvent-free conditions, catalyzed by recyclable basic ionic liquids. Res Chem Intermed 41:1301–1313

    Google Scholar 

  186. Shaikh MA, Farooqui M, Abed S (2019) Novel task-specific ionic liquid [Et2NH(CH2)2CO2H][AcO] as a robust catalyst for the efficient synthesis of some pyran-annulated scaffolds under solvent-free conditions. Res Chem Intermed 45:1595–1617

    CAS  Google Scholar 

  187. Warekar PP, Patil PT, Patil KT, Jamale DK, Kolekar GB, Anbhule PV (2017) PTSA-catalyzed straightforward novel approach for the synthesis of 1,2-bis(4-nitrophenyl)-1H-benzo[f]chromen-3-amine and the evaluation of their antituberculosis activity. Res Chem Intermed 43:4115–4127

    CAS  Google Scholar 

  188. Olyaei A, Shahsavari MS, Sadeghpour M (2017) Organocatalytic approach toward the green one-pot synthesis of novel benzo[f]chromenes and 12H-benzo[5,6]chromeno[2,3-b]pyridines. Res Chem Intermed 44:943–956

    Google Scholar 

  189. Hosseinnia R, Mamaghani M, Tabatabaeian K, Shirini F, Rassa M (2012) An expeditious regioselective synthesis of novel bioactive indole-substituted chromene derivatives via one-pot three-component reaction. Bioorg Med Chem Lett 22:5956–5960

    CAS  Google Scholar 

  190. Wan Y, Wang C, Wang H, Zhao L, Zhang X, Shi J, Wu H (2014) Efficient One-Pot Syntheses of 7-Alkyl-6H,7H-naphtho[1,2:5,6]pyrano-[3,2-c]chromen-6-ones by 1-Methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium Chloride. J Heterocycl Chem 51:1293–1297

    CAS  Google Scholar 

  191. Ma W, Wang X, Yan F, Wu L, Wang Y (2010) Reusable melamine trisulfonic acid-catalyzed three-component synthesis of 7-alkyl-6H,7H-naphtho[1′,2′:5,6]pyrano[3,2-c]chromen-6-ones. Monatsh Chem 142:163–167

    Google Scholar 

  192. Nikpassand M, Leila ZF, Zahra G, Jafarian Z (2018) Potassium 2-oxoimidazolidine-1,3-diide as a novel catalyst for grind synthesis of pyrano[4,3-b]chromenone. J Chil Chem Soc 63:41965–44199

    Google Scholar 

  193. Bhattacharjee S, Gattu R, Khan AT (2018) Triethylamine-mediated one-pot synthesis of benzo[f]chromene derivatives. ChemistrySelect 3:4760–4763

    CAS  Google Scholar 

  194. Mashraqui SH, Patil MB, Mistry HD, Ghadigaonkar S, Meetsma A (2004) A three-component reaction of phenol, aldehyde, and active methylene substrate under lewis acid catalysis: successful trapping ofo-quinone methide to afford benzopyran systems. Chem Lett 33:1058–1059

    CAS  Google Scholar 

  195. Devi KM, Chanu LG, Chanu IS, Singh OM (2014) One-pot synthesis of 1H-naphtho[2,1-b]pyran derivatives under solvent- free conditions. Lett Org Chem 11:743–747

    CAS  Google Scholar 

  196. Kumar KP, Satyanarayana S, Reddy PL, Narasimhulu G, Ravirala N, Reddy BVS (2012) Iodine-catalyzed three-component one-pot synthesis of naphthopyranopyrimidines under solvent-free conditions. Tetrahedron Lett 53:1738–1741

    Google Scholar 

  197. Mohaqeq M, Safaei-Ghomi J, Shahbazi-Alavi H (2015) ZrOCl2/nano TiO2 as an efficient catalyst for the one pot synthesis of naphthopyranopyrimidines under solvent-free conditions. Acta Chim Slov 62:967–972

    CAS  PubMed  Google Scholar 

  198. Khurana JM, Lumb A, Chaudhary A, Nand B (2013) Synthesis and in vitro evaluation of antioxidant activity of diverse naphthopyranopyrimidines, diazaanthra[2,3-d][1,3]dioxole-7,9-dione and tetrahydrobenzo[a]xanthen-11-ones. RSC Adv 3:1844–1854

    CAS  Google Scholar 

  199. Singh M, Nandi G, Samai S (2010) First InCl3-catalyzed, three-component coupling of aldehydes, β-naphthol, and 6-amino-1,3-dimethyluracil to functionalized naphthopyranopyrimidines. Synlett 07:1133–1137

    Google Scholar 

  200. Cimarellin C, Fratoni D, Palmier G (2011) Novel stereoselective synthesis of 2,3-dihydro-1H-benzo[f]chromen-3-amine derivatives through a one-pot three component reaction. Tetrahedron Asymmetry 22:1542–1547

    Google Scholar 

  201. Nizami TA, Hua R (2018) Synthesis of 3 H -naphtho[2.1- b]pyran-2-carboxamides from cyclocoupling of β-naphthol, propargyl alcohols and isocyanide in the presence of Lewis acids. Tetrahedron 74:3776–3780

    CAS  Google Scholar 

  202. Yadav JS, Subba Reddy BV, Biswas SK, Sengupta S (2009) Gallium(III) chloride-catalyzed three-component coupling of naphthol, alkyne and aldehyde: a novel synthesis of 1,3-disubstituted-3H-benzo[f] chromenes. Tetrahedron Lett 50:5798–5801

    CAS  Google Scholar 

  203. Asadi S, Mohammadi Ziarani G, Rahimifard M, Abolhassani Soorki A (2014) A green one-pot synthesis of spiron/aphthopyrano[1,2-b]indeno-7,3′-indolines. Res Chem Intermed 41:6219–6227

    Google Scholar 

  204. Kong D, Lu G, Wu M, Shi Z, Li Q (2017) One-pot, catalyst-free synthesis of spiro[dihydroquinoline-naphthofuranone] compounds from isatins in water triggered by hydrogen bonding effects. ACS Sustain Chem Eng 5:3465–3470

    CAS  Google Scholar 

  205. Mohammadi Ziarani G, Lashgari N, Faramarzi S, Badiei A (2014) Efficient synthesis of spironaphthopyrano [2,3-d]pyrimidine-5,3′-indolines under solvent-free conditions catalyzed by SBA-Pr-SO3H as a nanoporous acid catalyst. Acta Chim Slov 61:574–579

    Google Scholar 

  206. Heravi M, Zakeri M, Moharami A (2012) Versatile three-component procedure for combinatorial synthesis of spiro-oxindoles with fused chromenes catalysed by l-proline. J Chem Sci 124:865–869

    CAS  Google Scholar 

  207. Shanthi G, Subbulakshmi G, Perumal PT (2007) A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron 63:2057–2063

    CAS  Google Scholar 

  208. Heravi MR, Norouzy F (2017) One-pot, four-component synthesis of novel biologically important indeno[2,3-b]quinoxaline]-3-carbonitriles in fluoro-alcohols under ultrasound irradiation. Res Chem Intermed 43:4265–4282

    Google Scholar 

  209. Khojasteh-Khosro S, Shahbazi-Alavi H (2019) Preparation of spirooxindoles catalyzed by nano-Co3S4 under microwave irradiations. J Chem Res 43:107–111

    CAS  Google Scholar 

  210. Mathew BP, Kumar A, Sharma S, Shukla PK, Nath M (2010) An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur J Med Chem 45:1502–1507

    CAS  PubMed  Google Scholar 

  211. Zanatta N, Squizani AMC, Fantinel L, Nachtigall FM, Borchhardt DM, Bonacorso HG, Martins MAP (2005) Synthesis of N-substituted 6-Trifluoromethyl-1,3-oxazinanes. J Braz Chem Soc 16:1255–1261

    CAS  Google Scholar 

  212. Zhang P, Terefenko EA, Fensome A, Wrobel J, Winneker R, Zhang Z (2003) Novel 6-Aryl-1,4-dihydrobenzo[d][1,3]oxazine-2-thiones as potent, selective, and orally active nonsteroidal progesterone receptor agonists. Bioorg Med Chem Lett 13:1313–1316

    CAS  PubMed  Google Scholar 

  213. Kuehne ME, Konopka A (1962) Dihydro-1,3-oxazines as antitumor agents. J Med Chem 5:257–280

    CAS  Google Scholar 

  214. Azizian J, Yadollahzadeh K, Delbari AS, Ghanbari MM (2012) An efficient Biginelli one-pot synthesis of new naphthalene-condensed oxazine derivatives under microwave-assisted conditions. Monatsh Chem 143:1417–1420

    CAS  Google Scholar 

  215. Ghomi JS, Zahedi S, Ghasemzadeh MA (2012) An efficient green route for the preparation of naphthoxazinones, applying a three-component one-pot condensation reaction under solvent-free conditions. Iran J Catal 2(1):27–30

    Google Scholar 

  216. Kumar A, Saxena A, Dewan M, De A, Mozumdar S (2011) Recyclable nanoparticulate copper mediated synthesis of naphthoxazinones in PEG-400: a green approach. Tetrahedron Lett 52(38):4835–4839

    CAS  Google Scholar 

  217. Dharma Rao GB, Kaushik MP, Halve AK (2012) An efficient synthesis of naphtha[1,2-e]oxazinone and 14-substituted-14H-dibenzo[a, j]xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solvent-free conditions. Tetrahedron Lett 53:2741–2744

    CAS  Google Scholar 

  218. Safaei Ghomi J, Zahedi S, Ghasemzadeh MA (2014) AgI nanoparticles as a remarkable catalyst in the synthesis of (amidoalkyl)naphthol and oxazine derivatives: an eco-friendly approach. Monatsh Chem 145:1191–1199

    CAS  Google Scholar 

  219. Salunkhe NG, Ladole CA, Thakare NV, Aswar AS (2017) MgFe2O4@SiO2–SO3H: an efficient, reusable catalyst for the microwave-assisted synthesis of benzoxazinone and benzthioxazinone via multicomponent reaction under solvent free condition. Res Chem Intermed 44:355–372

    Google Scholar 

  220. Basavegowda N, Somai Magar KB, Mishra K, Lee YR (2014) Green fabrication of ferromagnetic Fe3O4nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. New J Chem 38:5415–5420

    CAS  Google Scholar 

  221. Bazgir A, Dabiri M, Delbari A (2007) A novel three-component, one-pot synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives under microwave-assisted and thermal solvent-free conditions. Synlett 5:0821–0823

    Google Scholar 

  222. Sharma M, Manohar S, Rawat DS (2012) Lewis acid catalyzed synthesis of 1-aryl-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-ones under solvent free conditions: a mechanistic approach. J Heterocycl Chem 49:589–595

    CAS  Google Scholar 

  223. Kantevari S, Vuppalapati SVN, Bantu R, Nagarapu L (2010) An efficient one-pot three component synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-ones using montmorillonite k10 under solvent free conditions. J Heterocycl Chem 47:313–317

    CAS  Google Scholar 

  224. Hajra A, Kundu D, Majee A (2009) An efficient one-pot synthesis of naphthoxazinones by a three-component coupling of naphthol, aldehydes, and urea catalyzed by zinc triflate. J Heterocycl Chem 46:1019–1022

    CAS  Google Scholar 

  225. Chaskar A, Vyavhare V, Padalkar V, Phatangare K, Deokar H (2011) An environmentally benign one-pot synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-one derivatives catalysed by phosphomolybdic acid. J Ser Chem Soc 76:21–26

    CAS  Google Scholar 

  226. Harichandran G, Parameswari P, Shanmugam P (2018) A one-pot multicomponent synthesis of naphthoxazin-3-one derivatives using Amberlite IRA-400 Cl resin as green catalyst. Lett Org Chem 15:600–605

    CAS  Google Scholar 

  227. Gupta A, Kour D, Gupta VK, Kapoor KK (2016) Graphene oxide mediated solvent-free three component reaction for the synthesis of 1-amidoalkyl-2-naphthols and 1,2-dihydro-1-arylnaphth[1,2- e][1,3]oxazin-3-ones. Tetrahedron Lett 57:4869–4872

    CAS  Google Scholar 

  228. Sabitha G, Arundhathi K, Sudhakar K, Sastry BS, Yadav JS (2010) A novel three-component one-pot reaction involving β-naphthol, aldehydes, and urea promoted by TMSCl/NaI. J Heterocycl Chem 47:272–275

    CAS  Google Scholar 

  229. Dong F, Yang Li-fang, Jin-ming Y (2012) Synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-one catalyzed by pyridinium-based ionic liquid. Res Chem Intermed 39:2505–2512

    Google Scholar 

  230. Zhu X, Lee YR (2012) RuCl2(PPh3)3-catalyzed facile one-pot synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-ones and 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-thiones. Bull Korean Chem Soc 33:3831–3834

    CAS  Google Scholar 

  231. Kumar A, Gupta MK, Kumar M (2012) Micelle promoted supramolecular carbohydrate scaffold-catalyzed multicomponent synthesis of 1,2-dihydro-1-aryl-3H-naphth[1,2-e][1,3]oxazin-3-one and amidoalkyl naphthols derivatives in aqueous medium. RSC Adv 2:7371

    CAS  Google Scholar 

  232. Lei M, Ma L, Hu L (2011) Highly chemoselective condensation of β-naphthol, aldehyde, and urea catalyzed by thiamine hydrochloride. Synth Commun 41:3424–3432

    CAS  Google Scholar 

  233. Shafiee M, Khosropour AR, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Khavasi HR (2012) Synthesis of trans-1,3-diaryl-2-(5-methylisoxazol-3-yl)-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines via bismuth(III)-catalyzed one-pot pseudo-four component reaction. Mol Div 16:727–735

    CAS  Google Scholar 

  234. Turgut Z, Pelit E, Köycü A (2007) Synthesis of new 1,3-disubstituted-2,3-dihydro-1H-naphth[1,2-e][1,3]oxazines. Molecules 12:345–352

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Dutta AK, Gogoi P, Saikia MP, Borah R (2016) Development of environmentally benign methods towards the synthesis of anti-2,3-dihydro-1,2,3-trisubstituted-1H-naphth[1,2-e][1,3]oxazines using brønsted acidic catalysts. Catal Lett 146:902–908

    CAS  Google Scholar 

  236. Dutta AK, Gogoi P, Borah R (2017) Triphenylsulfophosphonium chlorometallates as efficient heterogeneous catalysts for the three-component synthesis of 2,3-dihydro-1,2,3-trisubstituted-1H-naphth[1,2-e][1,3]oxazines. Polyhedron 123:184–191

    CAS  Google Scholar 

  237. Sapkal SB, Shelke KF, Shingate BB, Shingare MS (2010) An efficient one-pot strategies for the synthesis of [1,3] oxazine derivatives. J Kor Chem Soc 54:437–442

    CAS  Google Scholar 

  238. Lohar T, Mane A, Kamat S, Salunkhe R (2018) A versatile water-stable fluorine containing organometallic lewis acid used in green synthesis of 1,3-oxazine scaffolds at room temperature. Polycyclc Aromat Comp. https://doi.org/10.1080/10406638.2018.1538057

    Article  Google Scholar 

  239. Azad S, Mirjalili BBF (2018) One-pot solvent-free synthesis of 2,3-dihydro-2-substituted-1H-naphtho[1,2-e][1,3]oxazine derivatives using Fe3O4@nano-cellulose/TiCl as a bio-based and recyclable magnetic nano-catalyst. Mol Diver 23:413–420

    Google Scholar 

  240. Reddy MV, Lim KT, Kim JT, Jeong YT (2012) Ultrasound-assisted one-pot synthesis of 1,3-oxazine derivatives catalysed by BF3–SiO2 under neat conditions. J Chem Res 36:398–401

    CAS  Google Scholar 

  241. Dhakane VD, Gholap SS, Deshmukh UP, Chavan HV, Bandgar BP (2014) An efficient and green method for the synthesis of [1,3]oxazine derivatives catalyzed by thiamine hydrochloride (VB1) in water. C R Chim 17:431–436

    CAS  Google Scholar 

  242. Ganesan S, Rajendran N, Sundarakumar S, Ganesan A, Pemiah B (2013) β-Naphthol in glycerol: a versatile pair for efficient and convenient synthesis of aminonaphthols, naphtho-1,3-oxazines, and benzoxanthenes. Synthesis 45:1564–1568

    CAS  Google Scholar 

  243. Nongrum R, Kharkongor M, Nongthombam GS, Rani JWS, Rahman N, Kharmawlong GK, Nongkhlaw R (2019) [1,3]oxazines: green synthesis by sonication using a magnetically-separable basic nano-catalyst and investigation of its activity against the toxic effect of a pesticide on the morphology of blood cells. Environ Chem Lett 17:1325–1331

    CAS  Google Scholar 

  244. Sadaphal SA, Sonar SS, Shingate BB, Shingare MS (2010) Water mediated synthesis of various [1,3]oxazine compounds using alum as a catalyst. Green Chem Lett Rev. 3:213–216

    CAS  Google Scholar 

  245. Mohebat R, Mojahedi A, Yazdani-Elah-Abadi A (2018) Synthesis of 1,3-Oxazine-4-thione derivatives through an efficient, rapid and green method catalyzed by l-proline in aqueous medium. Org Prep Proced Int 50:424–431

    CAS  Google Scholar 

  246. Lukevits E, Demicheva L (1993) Biological activity of furan derivatives. Chem Heterocycl Compd 29:243–267

    Google Scholar 

  247. Vahabinia HR, Karami B, Khodabakhshi S (2013) One-pot synthesis of benzamidonaphtho[2,1-b]furans and benzamidobenzo[b]furans as novel polycyclic heteroaromatic compounds. J Chin Chem Soc 60:1323–1327

    CAS  Google Scholar 

  248. Karami B, Khodabakhshi S, Hashemi F (2003) Synthesis of a novel class of benzofurans via a three-component, regiospecific intramolecular heterocylization reaction. Tetrahedron Lett 54:358–3583

    Google Scholar 

  249. Satoh T, Tsuda T, Kushino Y, Miura M, Nomura M (1996) Synthesis of naphthofuran-2(3H)-one derivatives by palladium-catalyzed three-component coupling using naphthols, aldehydes, and carbon monoxide. J Org Chem 61:6476–6477

    CAS  PubMed  Google Scholar 

  250. Yavari I, Anary-Abbasinejad M, Hossaini Z (2003) Reaction between naphthols and dimethyl acetylenedicarboxylate in the presence of phosphites. Synthesis of stable oxa-2λ5-phosphaphenanthrenes, and benzochromene derivatives. Org Biomol Chem 1:560–564

    CAS  PubMed  Google Scholar 

  251. Reza Naimi-Jamal M, Mirzaei M, Bolourtchian M, Sharifi A (2006) One-pot solvent-free preparation of 2-phenyl-1,3,2-aryldioxaborins on acidic alumina. Synth Commun 36:2711–2717

    Google Scholar 

Download references

Acknowledgements

Declared none.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Chaudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A. Recent development in the synthesis of heterocycles by 2-naphthol-based multicomponent reactions. Mol Divers 25, 1211–1245 (2021). https://doi.org/10.1007/s11030-020-10076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10076-4

Keywords

Navigation