Skip to main content

Advertisement

Log in

Design of potential anti-tumor PARP-1 inhibitors by QSAR and molecular modeling studies

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Poly ADP-ribose polymerase-1 (PARP-1) inhibitors have been recognized as new agents for the treatment of patients with breast cancer type 1 (BRCA1) disorders. The quantitative structure–activity relationships (QSAR) technique was used in order to achieve the required medicines for anticancer activity easier and faster. In this study, the QSAR method was developed to predict the half-maximal inhibitory concentration (IC50) of 51 1H-benzo[d]immidazole-4-carboxamide derivatives by genetic algorithm–multiple linear regression (GA–MLR) and least squares–support vector machine (LS–SVM) methods. Results in the best QSAR model represented the coefficient of leave-one-out cross-validation (Q 2cv ) = 0.971, correlation coefficient (R2) = 0.977, Fisher parameter (F) = 259.016 and root mean square error (RMSE) = 0.095, respectively, which indicated that the LS–SVM model had a good potential to predict the pIC50 (9 − log(IC50 nM)) values compared with other modeling methods. Also, molecular docking evaluated interactions between ligands and enzyme and their free energy of binding were calculated and used as descriptors. Molecular docking and the QSAR study completed each other. The results represented that the final model can be useful to design some new inhibitors. So, the knowledge of the QSAR modeling and molecular docking was used in pIC50 prediction and 51 new compounds were developed as PARP-1 inhibitors that 9 compounds had the best-proposed values for pIC50. The maximum enhancement of the inhibitory activity of compounds was 33.394%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sengodan SK, Sreelatha KH, Nadhan R, Srinivas P (2018) Regulation of epithelial to mesenchymal transition by BRCA1 in breast cancer. Crit Rev Oncol/Hematol 123(January):74–82. https://doi.org/10.1016/j.critrevonc.2018.01.008

    Article  Google Scholar 

  2. Sharma B, Kaur RP, Raut S, Munshi A (2018) BRCA1 mutation spectrum, functions, and therapeutic strategies: the story so far. Curr Probl Cancer 42(2):189–207. https://doi.org/10.1016/j.currproblcancer.2018.01.001

    Article  PubMed  Google Scholar 

  3. Vos S, van Diest PJ, Moelans CB (2018) A systematic review on the frequency of BRCA promoter methylation in breast and ovarian carcinomas of BRCA germline mutation carriers: mutually exclusive, or not? Crit Rev Oncol/Hematol 127(May):29–41. https://doi.org/10.1016/j.critrevonc.2018.05.008

    Article  Google Scholar 

  4. Song D, Huang H, Wang J, Zhao Y, Hu X, He F, Yu L, Wu J (2017) NF90 regulates PARP1 mRNA stability in hepatocellular carcinoma. Biochem Biophys Res Commun 488(1):211–217. https://doi.org/10.1016/j.bbrc.2017.05.037

    Article  CAS  PubMed  Google Scholar 

  5. Zhou J, Ji M, Zhu Z, Cao R, Chen X, Xu B (2017) 1H-benzo[d]immidazole-4-carboxamide derivatives as novel poly (ADP-ribose) polymerase-1 inhibitors with in vivo anti-tumor activity. Eur J Med Chem 132:26–41. https://doi.org/10.1016/j.ejmech.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  6. Park SH, Noh SJ, Kim KM, Bae JS, Kwon KS, Jung SH, Kim JR, Lee H, Chung MJ, Moon WS, Kang MJ (2015) Expression of DNA damage response molecules PARP1, γH2AX, BRCA1, and BRCA2 predicts poor survival of breast carcinoma patients. Transl Oncol 8(4):239–249. https://doi.org/10.1016/j.tranon.2015.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rabenau K, Hofstatter E (2016) DNA damage repair and the emerging role of poly(ADP-ribose) polymerase inhibition in cancer therapeutics. Clin Ther 38(7):1577–1588. https://doi.org/10.1016/j.clinthera.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Aouidate A, Ghaleb A, Ghamali M, Ousaa A, Sbai A, Bouachrine M, Lakhlifi T (2018) 3D QSAR studies, molecular docking and ADMET evaluation, using thiazolidine derivatives as template to obtain new inhibitors of PIM1 kinase. Comput Biol Chem 74:201–211. https://doi.org/10.1016/j.compbiolchem.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  9. Momeni M, Riahi S (2014) Prediction of amines capacity for carbon dioxide absorption in gas sweetening processes. J Nat Gas Sci Eng 21:442–450. https://doi.org/10.1016/j.jngse.2014.09.002

    Article  CAS  Google Scholar 

  10. Mehraein I, Riahi S (2017) The QSPR models to predict the solubility of CO2 in ionic liquids based on least-squares support vector machines and genetic algorithm-multi linear regression. J Mol Liq 225:521–530. https://doi.org/10.1016/j.molliq.2016.10.133

    Article  CAS  Google Scholar 

  11. Ghaslani D, Gorji ZE, Gorji AE, Riahi S (2017) Descriptive and predictive models for Henry’s law constant of CO2 in ionic liquids: a QSPR study. Chem Eng Res Des 120:15–25. https://doi.org/10.1016/j.cherd.2016.12.020

    Article  CAS  Google Scholar 

  12. Hasanebrahimi G, Riahi S, Fini MF (2017) Exploring beneficial structural features of ionic surfactants for wettability alteration of carbonate rocks using QSPR modeling technique. J Mol Liq 240:196–208. https://doi.org/10.1016/j.molliq.2017.05.009

    Article  CAS  Google Scholar 

  13. Rezaei B, Riahi S (2016) Prediction of CO2 loading of amines in carbon capture process using membrane contactors: a molecular modeling. J Nat Gas Sci Eng 33:388–396. https://doi.org/10.1016/j.jngse.2016.05.003

    Article  CAS  Google Scholar 

  14. Ruiz IL, Nieto MÁ (2018) A new data representation based on relative measurements and fingerprint patterns for the development of QSAR regression models. Chemom Intell Lab Syst 176(March):53–65. https://doi.org/10.1016/j.chemolab.2018.03.007

    Article  CAS  Google Scholar 

  15. Chen M, Yang X, Lai X, Gao Y (2015) 2D and 3D QSAR models for identifying diphenylpyridylethanamine based inhibitors against cholesteryl ester transfer protein. Bioorg Med Chem Lett 25(20):4487–4495. https://doi.org/10.1016/j.bmcl.2015.08.080

    Article  CAS  PubMed  Google Scholar 

  16. Scotti MT, Scotti L, Ishiki HM, Peron LM, de Rezende L, do Amaral AT (2016) Variable-selection approaches to generate QSAR models for a set of antichagasic semicarbazones and analogues. Chemom Intell Lab Syst. https://doi.org/10.1016/j.chemolab.2016.03.023

    Article  Google Scholar 

  17. Hernández N, Kiralj R, Ferreira MM, Talavera I (2009) Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors. Chemom Intell Lab Syst 98(1):65–77. https://doi.org/10.1016/j.chemolab.2009.04.012

    Article  CAS  Google Scholar 

  18. Liu Z, Liu Y, Zeng G, Shao B, Chen M, Li Z, Jiang Y, Liu Y, Zhang Y, Zhong H (2018) Application of molecular docking for the degradation of organic pollutants in the environmental remediation: a review. Chemosphere 203:139–150. https://doi.org/10.1016/j.chemosphere.2018.03.179

    Article  CAS  PubMed  Google Scholar 

  19. He G, Feng L, Chen H (2012) A QSAR study of the acute toxicity of halogenated phenols. Procedia Eng 43:204–209. https://doi.org/10.1016/j.proeng.2012.08.035

    Article  CAS  Google Scholar 

  20. Kramer VJ, Giesy JP (1999) Specific binding of hydroxylated polychlorinated biphenyl metabolites and other substances to bovine calf uterine estrogen receptor: structure–binding relationships. Sci Total Environ 233(1–3):141–161. https://doi.org/10.1016/S0048-9697(99)00221-1

    Article  CAS  PubMed  Google Scholar 

  21. Dai Y, Wang Q, Zhang X, Jia S, Zheng H, Feng D, Yu P (2010) Molecular docking and QSAR study on steroidal compounds as aromatase inhibitors. Eur J Med Chem 45(12):5612–5620. https://doi.org/10.1016/j.ejmech.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  22. Ihmaid S, Ahmed HE, Ali AA, Sherif YE, Tarazi HM, Riyadh SM, Zayed MF, Abulkhair HS, Rateb HS (2017) Rational design, synthesis, pharmacophore modeling, and docking studies for identification of novel potent DNA-PK inhibitors. Bioorg Chem 72:234–247. https://doi.org/10.1016/j.bioorg.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  23. Release H (2002) 7.5 for windows, molecular modeling system, Hypercube. Inc. http://www.hyper.com

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H. Gaussian 09 (2009) Gaussian 09, Gaussian, Inc., Wallingford, CT, vol 32, pp 5648–5652

  25. Todeschini R, Consonni V, Mauri A, Pavan M (2002). DRAGON software. Milano, Italy

  26. Kerwin SM (2010) ChemBioOffice ultra 2010 suite. “ProductHomePage @ www.cambridgesoft.com”. PerkinElmer Informatics

  27. Niculescu SP (2003) Artificial neural networks and genetic algorithms in QSAR. J Mol Struct (Thoechem) 622(1–2):71–83. https://doi.org/10.1016/S0166-1280(02)00619-X

    Article  CAS  Google Scholar 

  28. Pourbasheer E, Riahi S, Ganjali MR, Norouzi P (2009) Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. Eur J Med Chem 44(12):5023–5028. https://doi.org/10.1016/j.ejmech.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  29. Basant N, Gupta S, Singh KP (2015) Chemosphere predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches. Chemosphere 139:246–255. https://doi.org/10.1016/j.chemosphere.2015.06.063

    Article  CAS  PubMed  Google Scholar 

  30. Roy K, Roy PP (2009) Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques. Eur J Med Chem 44(7):2913–2922. https://doi.org/10.1016/j.ejmech.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  31. Vina A (2010) Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading Trott, Oleg; Olson, Arthur J. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  32. DeLano WL (2002) The PyMOL molecular graphics system. http://www.pymol.org

  33. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  34. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29. https://doi.org/10.1016/j.chemolab.2015.04.013

    Article  CAS  Google Scholar 

  35. Daina A, Zoete V (2016) A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11(11):1117–1121. https://doi.org/10.1002/cmdc.201600182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Juretic D, Kusic H, Dionysiou DD, Rasulev B, Bozic AL (2014) Modeling of photooxidative degradation of aromatics in water matrix; combination of mechanistic and structural–relationship approach. Chem Eng J 257:229–241. https://doi.org/10.1016/j.cej.2014.07.053

    Article  CAS  Google Scholar 

  37. Jukić M, Rastija V, Opačak-Bernardi T, Stolić I, Krstulović L, Bajić M, Glavaš-Obrovac L (2017) Antitumor activity of 3,4-ethylenedioxythiophene derivatives and quantitative structure–activity relationship analysis. J Mol Struct 1133:66–73. https://doi.org/10.1016/j.molstruc.2016.11.074

    Article  CAS  Google Scholar 

  38. de Melo EB, Martins JP, Jorge TC, Friozi MC, Ferreira MM (2010) Multivariate QSAR study on the antimutagenic activity of flavonoids against 3-NFA on Salmonella typhimurium TA98. Eur J Med Chem 45(10):4562–4569. https://doi.org/10.1016/j.ejmech.2010.07.017

    Article  CAS  Google Scholar 

  39. Lee A, Mercader AG, Duchowicz PR, Castro EA, Pomilio AB (2012) QSAR study of the DPPH radical scavenging activity of di(hetero)arylamines derivatives of benzo[b]thiophenes, halophenols and caffeic acid analogues. Chemom Intell Lab Syst 116:33–40. https://doi.org/10.1016/j.chemolab.2012.03.016

    Article  CAS  Google Scholar 

  40. Fernández M, Caballero J (2007) QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-a-phenylsulfonylacetamide derivatives. Bioorg Med Chem 15:6298–6310. https://doi.org/10.1016/j.bmc.2007.06.014

    Article  CAS  PubMed  Google Scholar 

  41. Paetz J, Schneider G (2005) A neuro-fuzzy approach to virtual screening in molecular bioinformatics. Fuzzy Sets Syst 152(1):67–82. https://doi.org/10.1016/j.fss.2004.10.015

    Article  Google Scholar 

  42. Gharaghani S, Khayamian T, Ebrahimi M (2013) Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. SAR QSAR Environ Res 24(9):773–794. https://doi.org/10.1080/1062936X.2013.792877

    Article  CAS  PubMed  Google Scholar 

  43. Cheng Z, Yang B, Chen Q, Gao X, Tan Y, Yuan T, Shen Z (2018) Quantitative–structure–activity-relationship (QSAR) models for the reaction rate and temperature of nitrogenous organic compounds in supercritical water oxidation (SCWO). Chem Eng J. https://doi.org/10.1016/j.cej.2018.07.167

    Article  Google Scholar 

  44. Nantasenamat C, Monnor T, Worachartcheewan A, Mandi P, Isarankura-Na-Ayudhya C, Prachayasittikul V (2014) Predictive QSAR modeling of aldose reductase inhibitors using Monte Carlo feature selection. Eur J Med Chem 76:352–359. https://doi.org/10.1016/j.ejmech.2014.02.043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the support from the Institute of Petroleum Engineering (IPE), University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Riahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi-Radmoghaddam, Z., Riahi, S., Gharaghani, S. et al. Design of potential anti-tumor PARP-1 inhibitors by QSAR and molecular modeling studies. Mol Divers 25, 263–277 (2021). https://doi.org/10.1007/s11030-020-10063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10063-9

Keywords

Navigation