Skip to main content

Advertisement

Log in

Diversity-oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1,3,4-oxadiazole-5-thioether moiety

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Based on the strategy of diversity-oriented synthesis and the structures of natural product pimprinine and streptochlorin, two series of novel pimprinine derivatives containing 1,3,4-oxadiazole-5-thioether moieties were efficiently synthesized under the optimized reaction conditions. Biological assays conducted at Syngenta showed the designed derivatives displayed an altered pattern of biological activity, of which 5h was identified as the most promising compound with strong activity against Pythium dissimile and also a broad antifungal spectrum in primary screening. Further structural optimization of pimprinine and streptochlorin derivatives is well under way, aiming to discover synthetic analogues with improved antifungal activity.

Graphic abstract

Two series of novel pimprinine derivatives containing 1,3,4-oxadiazole-5-thioether moieties were efficiently synthesized through diversity-oriented synthesis strategy under the optimized conditions. Biological assays showed the designed derivatives exhibited potential activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Joshi BS, Taylor WI, Bhate DS, Karmarkar SS (1963) The structure and synthesis of pimprinine. Tetrahedron 19:1437–1439. https://doi.org/10.1016/S0040-4020(01)98569-2

    Article  CAS  Google Scholar 

  2. Zhang MZ, Chen Q, Mulholland N, Beattie D, Irwin D, Gu YC, Yang GF, Clough J (2012) Synthesis and fungicidal activity of novel pimprinine analogues. Eur J Med Chem 53:283–291. https://doi.org/10.1016/j.ejmech.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  3. Naik SR, Harindran J, Varde AB (2001) Pimprinine, an extracellular alkaloid produced by Streptomyces CDRIL-312: fermentation, isolation and pharmacological activity. J Biotechnol 88(1):1–10. https://doi.org/10.1016/S0168-1656(01)00244-9

    Article  CAS  PubMed  Google Scholar 

  4. Kumar D, Maruthi Kumar N, Chang KH, Shah K (2010) Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles. Eur J Med Chem 45(10):4664–4668. https://doi.org/10.1016/j.ejmech.2010.07.023

    Article  CAS  PubMed  Google Scholar 

  5. Jia CY, Xu LY, Yu X, Ding YB, Jin B, Zhang MZ, Zhang WH, Yang GF (2018) An efficient synthesis and antifungal evaluation of natural product streptochlorin and its analogues. Fitoterapia 125:106–110. https://doi.org/10.1016/j.fitote.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  6. Wei Y, Fang W, Wan Z, Wang K, Yang Q, Cai X, Shi L, Yang Z (2014) Antiviral effects against EV71 of pimprinine and its derivatives isolated from Streptomyces sp. Virol J 11:195. https://doi.org/10.1186/s12985-014-0195-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lankapalli AR, Kannabiran K (2013) Interaction of marine Streptomyces compounds with selected cancer drug target proteins by in silico molecular docking studies. Interdiscip Sci 5(1):37–44. https://doi.org/10.1007/s12539-013-0146-0

    Article  CAS  PubMed  Google Scholar 

  8. Shim DW, Shin HJ, Han JW, Ji YE, Jang CH, Koppula S, Kang TB, Lee KH (2015) A novel synthetic derivative of melatonin, 5-hydroxy-2′-isobutyl-streptochlorin (HIS), inhibits inflammatory responses via regulation of TRIF-dependent signaling and inflammasome activation. Toxicol Appl Pharmacol 284(2):227–235. https://doi.org/10.1016/j.taap.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe H, Amano S, Yoshida J, Takase Y, Miyadoh S, Sasaki T, Hatsu M, Takeuchi Y, Komada Y (1988) A new antibiotic SF2583A, 4-chloro-5-(3′-indolyl) oxazole, produced by Streptomyces. Meiji Seika Kenkyu Nenpo 27:55–62

    Google Scholar 

  10. Kumar D, Kumar NM, Sundaree S, Johnson EO, Shah K (2010) An expeditious synthesis and anticancer activity of novel 4-(3′-indolyl)oxazoles. Eur J Med Chem 45(3):1244–1249. https://doi.org/10.1016/j.ejmech.2009.12.024

    Article  CAS  PubMed  Google Scholar 

  11. Zhang HZ, Zhao ZL, Zhou CH (2018) Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 144:444–492. https://doi.org/10.1016/j.ejmech.2017.12.044

    Article  CAS  PubMed  Google Scholar 

  12. Kwak TW, Shin HJ, Jeong YI, Han ME, Oh SO, Kim HJ, Kim DH, Kang DH (2015) Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma. Drug Des Devel Ther 9:2201–2214. https://doi.org/10.2147/DDDT.S80205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi IK, Shin HJ, Lee HS, Kwon HJ (2007) Streptochlorin, a marine natural product, inhibits NF-kappaB activation and suppresses angiogenesis in vitro. J Microbiol Biotechnol 17(8):1338–1343. https://doi.org/10.1371/journal.pone.0074194

    Article  CAS  PubMed  Google Scholar 

  14. Lee SH, Shin HJ, Kim DY, Shim DW, Kim TJ, Ye SK, Won HS, Koppula S, Kang TB, Lee KH (2013) Streptochlorin suppresses allergic dermatitis and mast cell activation via regulation of Lyn/Fyn and Syk signaling pathways in cellular and mouse models. PLoS ONE 8(9):e74194. https://doi.org/10.1371/journal.pone.0074194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park C, Shin HJ, Kim GY, Kwon TK, Nam TJ, Kim SK, Cheong J, Choi IW, Choi YH (2008) Induction of apoptosis by streptochlorin isolated from Streptomyces sp. in human leukemic U937 cells. Toxicol In Vitro 22(6):1573–1581. https://doi.org/10.1016/j.tiv.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  16. Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatos A (2010) Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6(4):261–263. https://doi.org/10.1038/nchembio.331

    Article  CAS  PubMed  Google Scholar 

  17. Li L, He S, Ding L, Yuan Y, Zhu P, Epstein S, Fan J, Wu X, Yan X (2016) Efficient Preparation of Streptochlorin from Marine Streptomyces sp. SYYLWHS-1-4 by combination of response surface methodology and high-speed counter-current chromatography. Molecules. https://doi.org/10.3390/molecules21060693

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang MZ, Chen Q, Xie CH, Mulholland N, Turner S, Irwin D, Gu YC, Yang GF, Clough J (2015) Synthesis and antifungal activity of novel streptochlorin analogues. Eur J Med Chem 92:776–783. https://doi.org/10.1016/j.ejmech.2015.01.043

    Article  CAS  PubMed  Google Scholar 

  19. Zhang MZ, Mulholland N, Beattie D, Irwin D, Gu YC, Chen Q, Yang GF, Clough J (2013) Synthesis and antifungal activity of 3-(1,3,4-oxadiazol-5-yl)-indoles and 3-(1,3,4-oxadiazol-5-yl)methyl-indoles. Eur J Med Chem 63:22–32. https://doi.org/10.1016/j.ejmech.2013.01.038

    Article  CAS  PubMed  Google Scholar 

  20. Stephens CE, Tanious F, Kim S, Wilson WD, Schell WA, Perfect JR, Franzblau SG, Boykin DW (2001) Diguanidino and “reversed” diamidino 2,5-diarylfurans as antimicrobial agents. J Med Chem 44(11):1741–1748. https://doi.org/10.1021/jm000413a

    Article  CAS  PubMed  Google Scholar 

  21. Zou XJ, Lai LH, Jin GY, Zhang ZX (2002) Synthesis, fungicidal activity, and 3D-QSAR of pyridazinone-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. J Agric Food Chem 50(13):3757–3760. https://doi.org/10.1021/jf0201677

    Article  CAS  PubMed  Google Scholar 

  22. Li TL, Wen G, Li JS, Zhang WX, Wu S (2019) A useful synthesis of 2-acylamino-1,3,4-oxadiazoles from acylthiosemicarbazides using potassium iodate and the discovery of new antibacterial compounds. Molecules 24(8):1490. https://doi.org/10.3390/molecules24081490

    Article  CAS  PubMed Central  Google Scholar 

  23. Zhang MZ, Jia CY, Gu YC, Mulholland N, Turner S, Beattie D, Zhang WH, Yang GF, Clough J (2017) Synthesis and antifungal activity of novel indole-replaced streptochlorin analogues. Eur J Med Chem 126:669–674. https://doi.org/10.1016/j.ejmech.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  24. Bajaj S, Asati V, Singh J, Roy PP (2015) 1,3,4-Oxadiazoles: an emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur J Med Chem 97:124–141. https://doi.org/10.1016/j.ejmech.2015.04.051

    Article  CAS  PubMed  Google Scholar 

  25. Song X, Li P, Li M, Yang A, Yu L, Luo L, Hu D, Song B (2018) Synthesis and investigation of the antibacterial activity and action mechanism of 1,3,4-oxadiazole thioether derivatives. Pestic Biochem Physiol 147:11–19. https://doi.org/10.1016/j.pestbp.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann HH, Kunz A, Simon VA, Palese P, Shaw ML (2011) Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc Natl Acad Sci U S A 108(14):5777–5782. https://doi.org/10.1073/pnas.1101143108

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rodrigues T, Moreira R, Gut J, Rosenthal PJ, Paul M, Biagini GA, Lopes F, dos Santos DJ, Guedes RC (2011) Identification of new antimalarial leads by use of virtual screening against cytochrome bc(1). Bioorg Med Chem 19(21):6302–6308. https://doi.org/10.1016/j.bmc.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  28. Li XQ, Xu Q, Luo J, Wang LJ, Jiang B, Zhang RS, Shi DY (2017) Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B. Eur J Med Chem 136:348–359. https://doi.org/10.1016/j.ejmech.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  29. Neumann T, Benajiba L, Goring S, Stegmaier K, Schmidt B (2015) Evaluation of improved glycogen synthase kinase-3alpha inhibitors in models of acute myeloid leukemia. J Med Chem 58(22):8907–8919. https://doi.org/10.1021/acs.jmedchem.5b01200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du QR, Li DD, Pi YZ, Li JR, Sun J, Fang F, Zhong WQ, Gong HB, Zhu HL (2013) Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anticancer/antimicrobial agents. Bioorg Med Chem 21(8):2286–2297. https://doi.org/10.1016/j.bmc.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  31. Aurelio L, Scullino CV, Pitman MR, Sexton A, Oliver V, Davies L, Rebello RJ, Furic L, Creek DJ, Pitson SM, Flynn BL (2016) From sphingosine kinase to dihydroceramide desaturase: a structure-activity relationship (SAR) study of the enzyme inhibitory and anticancer activity of 4-((4-(4-Chlorophenyl)thiazol-2-yl)amino)phenol (SKI-II). J Med Chem 59(3):965–984. https://doi.org/10.1021/acs.jmedchem.5b01439

    Article  CAS  PubMed  Google Scholar 

  32. Ruan L, Fan R, Liu X, Chen J, Weng J (2015) Synthesis and antifungal activity of novel 3-[(5-Benzylthio- 1,3,4-oxadiazol-2-yl)methyl]benzo[d]thiazol- (oxazol)-2(3H)-ones. Chin J Org Chem 35:1166–1172. https://doi.org/10.6023/cjoc201410041

    Article  CAS  Google Scholar 

  33. Li Y, Zhu H, Chen K, Liu R, Khallaf A, Zhang X, Ni J (2013) Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings. Org Biomol Chem 11(24):3979–3988. https://doi.org/10.1039/c3ob40345a

    Article  CAS  PubMed  Google Scholar 

  34. Ramsbeck D, Buchholz M, Koch B, Bohme L, Hoffmann T, Demuth HU, Heiser U (2013) Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold. J Med Chem 56(17):6613–6625. https://doi.org/10.1021/jm4001709

    Article  CAS  PubMed  Google Scholar 

  35. Xie X, Cong W, Zhao F, Li H, Xin W, Hou G, Wang C (2018) Synthesis, physiochemical property and antimicrobial activity of novel quaternary ammonium salts. J Enzyme Inhib Med Chem 33(1):98–105. https://doi.org/10.1080/14756366.2017.1396456

    Article  CAS  PubMed  Google Scholar 

  36. Gan X, Hu D, Chen Z, Wang Y, Song B (2017) Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates. Bioorg Med Chem Lett 27(18):4298–4301. https://doi.org/10.1016/j.bmcl.2017.08.038

    Article  CAS  PubMed  Google Scholar 

  37. Man RJ, Tang DJ, Lu XY, Tao XX, Yang MR, Wang LL, Wang BZ, Xu C, Zhu HL (2016) Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor. Med Chem Commun 7:1759–1767. https://doi.org/10.1039/C6MD00255B

    Article  CAS  Google Scholar 

  38. Duan YT, Man RJ, Tang DJ, Yao YF, Tao XX, Yu C, Liang XY, Makawana JA, Zou MJ, Wang ZC, Zhu HL (2016) Design, synthesis and antitumor activity of novel link-bridge and b-ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci Rep. https://doi.org/10.1038/srep25387

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karabanovich G, Nemecek J, Valaskova L, Carazo A, Konecna K, Stolarikova J, Hrabalek A, Pavlis O, Pavek P, Vavrova K, Roh J, Klimesova V (2017) S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents. Eur J Med Chem 126:369–383. https://doi.org/10.1016/j.ejmech.2016.11.041

    Article  CAS  PubMed  Google Scholar 

  40. Kumar D, Kumar NM, Noel B, Shah K (2012) A series of 2-arylamino-5-(indolyl)-1,3,4-thiadiazoles as potent cytotoxic agents. Eur J Med Chem 55:432–438. https://doi.org/10.1016/j.ejmech.2012.06.047

    Article  CAS  PubMed  Google Scholar 

  41. Gadegoni H, Manda S (2013) Synthesis and screening of some novel substituted indoles contained 1,3,4-oxadiazole and 1,2,4-triazole moiety. Chin Chem Lett 24(2):127–130

    Article  CAS  Google Scholar 

  42. Spandl RJ, Diaz-Gavilan M, O’Connell KM, Thomas GL, Spring DR (2008) Diversity-oriented synthesis. Chem Rec 8(3):129–142. https://doi.org/10.1002/tcr.20144

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Chen Z, Zhang X, Jia Y (2018) Divergent strategy in natural product total synthesis. Chem Rev 118(7):3752–3832. https://doi.org/10.1021/acs.chemrev.7b00653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support for this work from the National Natural Science Foundation of China (21602110), National Key R&D Program of China (2018YFC1602804), Jiangsu Provincial Science Foundation for Youths (BK20160734) and the Fundamental Research Funds and for the Central Universities (KYTZ201604, KYLH201908). We thank the Biology Team at Syngenta for their kind help in screening the compounds for biological activity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinya Han, Wei-Hua Zhang or Ming-Zhi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, ZL., Zhu, Y., Liu, JR. et al. Diversity-oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1,3,4-oxadiazole-5-thioether moiety. Mol Divers 25, 205–221 (2021). https://doi.org/10.1007/s11030-020-10048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10048-8

Keywords

Navigation