Diverse coordination of aroylhydrazones toward iron(III) in solid state and in solution: spectrometric, spectroscopic and computational study


The coordination properties of N′-(2-hydroxy-3-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (H2L1), N′-(2-hydroxy-4-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (H2L2) and N′-(2-hydroxy-5-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (H2L3) toward Fe(III) ions were studied by computational, spectrometric (MS) and spectroscopic methods (UV–Vis, IR and Raman spectroscopy) in solid state and in solution. Free ligands were present in keto-amine form with intramolecular H-bond. In MeOH:H2O 1:1 system, the 1:1 complexes with Fe(III) were formed, characterized by lgK ≥ 6. The coordination to the metal ion was achieved via oxygen and azomethine nitrogen since the hydrolysis of hydrazone bond was suppressed. Unlike the 1:1 stoichiometry in methanolic solution, the composition of the complexes extracted to chloroform was Fe(L)(HL). The release of three protons upon complexation was determined by independent spectrophotometric measurements. The complexes isolated from MeOH/EtOH solution have also stoichiometry 1:2. However, depending on the position of the methoxy substituent, two types of complexes were formed. In Fe(H2L1)2Cl3 and Fe(H2L3)2Cl3, hydrazones acted as neutral ligands, while in Fe(HL2)2Cl the keto-enol tautomeric interconversion and release of one proton per ligand took place. All complexes were analyzed in gas phase as well, using triple quadrupole, ion trap and H/D exchange for determination of labile hydrogens. Based on the fragmentation pathways, the structural isomers were distinguished.

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Fig. 5


  1. 1.

    Zhang H, Zhabyeyev P, Wang S, Oudit GY (2019) Role of iron metabolism in heart failure: from iron deficiency to iron overload. BBA Mol Basis Dis 1865:1925–1937. https://doi.org/10.1016/j.bbadis.2018.08.030

    CAS  Article  Google Scholar 

  2. 2.

    Hrušková K, Kovaříková P, Bendová P, Hašková P, Macková E, Stariat J, Vávrová A, Vávrová K, Šimůnek T (2011) Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis. Chem Res Toxicol 24:290–302. https://doi.org/10.1021/tx100359t

    CAS  Article  Google Scholar 

  3. 3.

    Buss JL, Poňka P (2003) Hydrolysis of pyridoxal isonicotinoyl hydrazone and its analogs. Biochim Biophys Acta 1619:177–186. https://doi.org/10.1016/S0304-4165(02)00478-6

    CAS  Article  Google Scholar 

  4. 4.

    Kovarikova P, Mokry M, Klimeš J, Vavrova K (2006) HPLC study on stability of pyridoxal isonicotinoyl hydrazone. J Pharm Biomed Anal 40:105–112. https://doi.org/10.1016/j.jpba.2005.06.021

    CAS  Article  Google Scholar 

  5. 5.

    Štěrba M, Popelová O, Šimůnek T, Mazurová Y, Potáčová A, Adamcová M, Gunčová I, Kaiserová H, Palička V, Poňka P, Geršl V (2007) Iron chelation-afforded cardioprotection against chronic anthracycline cardiotoxicity: a study of salicylaldehyde isonicotinoyl hydrazone (SIH). Toxicology 235:150–166. https://doi.org/10.1016/j.tox.2007.03.020

    CAS  Article  Google Scholar 

  6. 6.

    Chen YL, Kong X, Xie Y, Hider RC (2018) The interaction of pyridoxal isonicotinoyl hydrazone (PIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) with iron. J Inorg Biochem 180:194–203. https://doi.org/10.1016/j.jinorgbio.2017.12.007

    CAS  Article  Google Scholar 

  7. 7.

    Bernhardt PV, Chin P, Richardson DR (2001) Unprecedented oxidation of a biologically active aroylhydrazone chelator catalysed by iron(III): serendipitous identification of diacylhydrazine ligands with high iron chelation efficacy. J Biol Inorg Chem 6:801–809. https://doi.org/10.1007/s007750100258

    CAS  Article  Google Scholar 

  8. 8.

    Bernhardt PV, Chin P, Sharpe PC, Wang J-CC, Richardson DR (2005) Novel diaroylhydrazine ligands as iron chelators: coordination chemistry and biological activity. J Biol Inorg Chem 10:761–777. https://doi.org/10.1007/s00775-005-0018-0

    CAS  Article  Google Scholar 

  9. 9.

    Bikas R, Hosseini-Monfared H, Zoppellaro G, Herchel R, Tucek J, Owczarza AM, Kubicki M, Zboril R (2013) Synthesis, structure, magnetic properties and theoretical calculations of methoxy bridged dinuclear iron(III) complex with hydrazone based O, N, N-donor ligand. Dalton Trans 42:2803–2812. https://doi.org/10.1039/c2dt31751f

    CAS  Article  Google Scholar 

  10. 10.

    Hossain SM, Lakma A, Pradhan RN, Demeshko S, Singh AK (2017) Valence directed binding mode of [2 × 2] iron grids of an unsymmetrical picolinic hydrazone based ligand. Dalton Trans 46:12612–12618. https://doi.org/10.1039/c7dt02433a

    CAS  Article  Google Scholar 

  11. 11.

    Galić N, Rubčić M, Magdić K, Cindrić M, Tomišić V (2011) Solution and solid-state studies of complexation of transition-metal cations and Al(III) by aroylhydrazones derived from nicotinic acid hydrazide. Inorg Chim Acta 366:98–104. https://doi.org/10.1016/j.ica.2010.10.017

    CAS  Article  Google Scholar 

  12. 12.

    Murphy TB, Johnson DK, Rose NJ, Aruffo A, Schomaker V (1982) Structural studies of iron (III) complexes of the new iron-binding drug, pyridoxal isonicotinoyl hydrazone. Inorg Chim Acta 66:L67–L68

    CAS  Article  Google Scholar 

  13. 13.

    Murphy TB, Rose NJ, Schomaker V, Aruffo A (1985) Syntheses of iron(III) aroyl hydrazones containing pyridoxal and salicylaldehyde. The crystal and molecular structure of two iron(III)-pyridoxal isonicotinoyl hydrazone complexes. Inorg Chim Acta 108:183–194. https://doi.org/10.1016/s0020-1693(00)84538-7

    CAS  Article  Google Scholar 

  14. 14.

    Richardson DR, Bernhardt PV (1999) Crystal and molecular structure of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and its iron(III) complex: an iron chelator with anti-tumour activity. J Biol Inorg Chem 42:266–273. https://doi.org/10.1007/s007750050312

    Article  Google Scholar 

  15. 15.

    Matoga D, Szklarzewicz J, Stadnicka K, Shongwe MS (2007) Iron(III) complexes with a biologically relevant aroylhydrazone: crystallographic evidence for coordination versatility. Inorg Chem 46:9042–9044. https://doi.org/10.1021/ic701435x

    CAS  Article  Google Scholar 

  16. 16.

    Liu H, Gao F, Niu D (2011) Synthesis and structure of iron(III) complex with N,N,O-donor aroylhydrazones: the chloride anion as hydrogen bond acceptor forming infinite chains. Asian J Chem 5:2014–2016

    Google Scholar 

  17. 17.

    Coa JC, Cardona-Galeano W, Restrepo A (2018) Fe3+ chelating quinoline–hydrazone hybrids with proven cytotoxicity, leishmanicidal, and trypanocidal activities. Phys Chem Chem Phys 20:20382–20390. https://doi.org/10.1039/c8cp04174a

    CAS  Article  Google Scholar 

  18. 18.

    Benković T, Kenđel A, Parlov-Vuković J, Kontrec D, Chiş V, Miljanić S, Galić N (2018) Multiple dynamics of aroylhydrazone induced by mutual effect of solvent and light—spectroscopic and computational study. J Mol Liq 25:518–525. https://doi.org/10.1016/j.molliq.2018.01.158

    CAS  Article  Google Scholar 

  19. 19.

    Benković T, Kenđel A, Parlov-Vuković J, Kontrec D, Chiş V, Miljanić S, Galić N (2018) Aromatic hydrazones derived from nicotinic acid hydrazide as fluorimetric pH sensing molecules: structural analysis by computational and spectroscopic methods in solid phase and in solution. Spectrochim Acta A 190:259–267. https://doi.org/10.1016/j.saa.2017.09.038

    CAS  Article  Google Scholar 

  20. 20.

    Galić N, Brođanac I, Kontrec D, Miljanić S (2013) Structural investigations of aroylhydrazones derived from nicotinic acid hydrazide in solid state and in solution. Spectrochim Acta A 107:263–270. https://doi.org/10.1016/j.saa.2013.01.028

    CAS  Article  Google Scholar 

  21. 21.

    Galić N, Dijanošić A, Kontrec D, Miljanić S (2012) Structural investigation of aroylhydrazones in dimethylsulphoxide/water mixtures. Spectrochim Acta A 95:347–353. https://doi.org/10.1016/j.saa.2012.03.086

    CAS  Article  Google Scholar 

  22. 22.

    Galić N, Perić B, Kojić-Prodić B, Cimerman Z (2001) Structural and spectroscopic characteristics of aroylhydrazones derived from nicotinic acid hydrazide. J Mol Struct 559:187–194. https://doi.org/10.1016/S0022-2860(00)00703-1

    Article  Google Scholar 

  23. 23.

    Benković T, Kontrec D, Tomišić V, Budimir A, Galić N (2016) Acid–base properties and kinetics of hydrolysis of aroylhydrazones derived from nicotinic acid hydrazide. J Solution Chem 45:1227–1245. https://doi.org/10.1007/s10953-016-0504-8

    CAS  Article  Google Scholar 

  24. 24.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford

    Google Scholar 

  25. 25.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    CAS  Article  Google Scholar 

  26. 26.

    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    CAS  Article  Google Scholar 

  27. 27.

    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. https://doi.org/10.1139/p80-159

    CAS  Article  Google Scholar 

  28. 28.

    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    CAS  Article  Google Scholar 

  29. 29.

    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269. https://doi.org/10.1063/1.447079

    CAS  Article  Google Scholar 

  30. 30.

    Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887. https://doi.org/10.1021/ct100326h

    CAS  Article  Google Scholar 

  31. 31.

    Vauthier E, Maurel F, Couesnon T, Cossé-Barbi A (1999) IR study of complex between salicylalbenzoylhydrazone (SBH) and iron III: normal mode assignment assisted by quantum mechanical calculation. Spectrosc Lett 32:505–517. https://doi.org/10.1080/00387019909350002

    CAS  Article  Google Scholar 

  32. 32.

    Colonna C, Doucet J-P, Cossé-Barbi A (1995) Infrared study of complexes between iron, salicylaldehyde benzoyl hydrazone and seven analogous derivatives. Transit Met Chem 20:338–343. https://doi.org/10.1007/BF00139124

    CAS  Article  Google Scholar 

  33. 33.

    Anitha C, Sumathi S, Tharmaraj P, Sheela CD (2011) Synthesis, characterization, and biological activity of some transition metal complexes derived from novel hydrazone azo Schiff base ligand. Int J Inorg Chem. https://doi.org/10.1155/2011/493942

    Article  Google Scholar 

  34. 34.

    Srestha S (2017) Synthesis and characterization of cobalt (III) complex of salicylaldehyde benzoyl hydrazone. JIST 22:132–136

    Google Scholar 

  35. 35.

    Yaul SR, Yaul AR, Pethe GB, Aswar AS (2009) Synthesis and characterization of transition metal complexes with N, O-chelating Schiff base ligand. Am-Euras J Sci Res 4:229–234

    CAS  Google Scholar 

  36. 36.

    Vitolo LMW, Hefter GT, Clare BW, Webb J (1990) Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part II. Formation constants with iron(III) and iron(II). Inorg Chim Acta 170:171–176. https://doi.org/10.1016/S0020-1693(00)80472-7

    CAS  Article  Google Scholar 

  37. 37.

    Renny JS, Tomasevich LL, Tallmadge EH, Collum DB (2013) Method of continuous variations: applications of Job plots to the study of molecular associations in organometallic chemistry. Angew Chem Int Ed 52:11998–12013. https://doi.org/10.1002/anie.201304157

    CAS  Article  Google Scholar 

  38. 38.

    Morrison GH, Freiser H (1957) Solvent extraction in analytical chemistry. Wiley, New York

    Google Scholar 

Download references


This work was fully supported by the Croatian science foundation (Project IP-2014-09-4841).

Author information



Corresponding author

Correspondence to Nives Galić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3371 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benković, T., Kontrec, D., Kazazić, S. et al. Diverse coordination of aroylhydrazones toward iron(III) in solid state and in solution: spectrometric, spectroscopic and computational study. Mol Divers 24, 1253–1263 (2020). https://doi.org/10.1007/s11030-019-09989-6

Download citation


  • Aroylhydrazones
  • Fe(III)
  • Complexes
  • UV–Vis
  • IR and Raman spectroscopy
  • Mass spectrometry
  • Computational methods