Skip to main content

Advertisement

Log in

Development of green methodologies for Heck, Chan–Lam, Stille and Suzuki cross-coupling reactions

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Organic reactions under green conditions have become popular day by day because of increased use of harmful chemicals leading to environmental hazards. This review focuses the implementation of green chemistry in Suzuki–Miyaura, Heck, Stille and Chan–Lam cross-coupling reactions incorporating a variety of strategies in which ionic liquids, water and microwave irradiations are extensively used.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 4
Scheme 8
Scheme 9
Fig. 5
Scheme 10
Scheme 11
Scheme 12
Fig. 6
Scheme 13
Fig. 7
Scheme 14
Scheme 15
Scheme 16
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Martin R, Buchwald SL (2008) Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc Chem Res 41:1461–1473. https://doi.org/10.1021/ar800036s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Signori AM, Latocheski E, Albuquerque BL, Faggion D Jr, Bisol TB, Meier L, Domingos JB (2015) Aqueous intramolecular Mizoroki-Heck reaction of (2-iodophenyl)(3-methyl-1H-indol-1- yl)methanone: a model reaction for the in situ performance evaluation of Pd catalysts. New J Chem 39:1574–1578. https://doi.org/10.1039/C4NJ01921K

    Article  CAS  Google Scholar 

  3. Akhtar R, Zahoor AF, Parveen B, Suleman M (2018) Development of environmental friendly synthetic strategies for Sonogashira cross coupling reaction: an update. Synth Commun. https://doi.org/10.1080/00397911.2018.1514636

    Article  Google Scholar 

  4. Wang D-C, Wang H-X, Hao E-J, Jiang X-H, Xie M-S, Qu G-R, Guoa H-M (2016) Synthesis of 3,3-disubstituted oxindoles containing a 3-(4-aminobut-2-ynyl) unit via domino Heck-Sonogashira reaction in water. Adv Synth Catal 358:494–499. https://doi.org/10.1002/adsc.201500887

    Article  CAS  Google Scholar 

  5. Hamilton AE, Buxton AM, Peeples CJ, Chalker JM (2013) An operationally simple aqueous Suzuki–Miyaura cross-coupling reaction for an undergraduate organic chemistry laboratory. J Chem Educ 90:1509–1513. https://doi.org/10.1021/ed4002333

    Article  CAS  Google Scholar 

  6. Xue J-Y, Li J-C, Li H-X, Li H-Y, Lang J-P (2016) Chan–Lam cross-coupling reactions promoted by anionic copper(I)/iodide species with cationic methyl-((pyridinyl)-pyrazolyl) pyridin-1-ium. Tetrahedron 72:7014–7020. https://doi.org/10.1016/j.tet.2016.09.032

    Article  CAS  Google Scholar 

  7. Munir I, Zahoor AF, Rasool N, Naqvi SAR, Zia KM, Ahmad R (2018) Synthetic applications and methodology development of Chan–Lam coupling: a review. Mol Divers. https://doi.org/10.1007/s11030-018-9870-z

    Article  PubMed  Google Scholar 

  8. Suzuka T, Kimura K, Nagamine T (2011) Reusable polymer-supported terpyridine palladium complex for Suzuki–Miyaura, Mizoroki-Heck, Sonogashira, and Tsuji-Trost reaction in water. Polymers 3:621–639. https://doi.org/10.3390/polym3010621

    Article  CAS  Google Scholar 

  9. Chalker JM, Wood CSC, Davis BG (2009) A convenient catalyst for aqueous and protein Suzuki–Miyaura cross-coupling. J Am Chem Soc 131:16346–16347. https://doi.org/10.1021/ja907150m

    Article  CAS  PubMed  Google Scholar 

  10. Isley NA, Gallou F, Lipshutz BH (2013) Transforming Suzuki–Miyaura cross-couplings of MIDA boronates into a green technology: no organic solvents. J Am Chem Soc 135:17707–17710. https://doi.org/10.1021/ja409663q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mattiello S, Rooney M, Sanzone A, Brazzo P, Sassi M, Beverina L (2017) Suzuki–Miyaura micellar cross-coupling in water, at room temperature, and under aerobic atmosphere. Org Lett 19:654–657. https://doi.org/10.1021/acs.orglett.6b03817

    Article  CAS  PubMed  Google Scholar 

  12. Faria VW, Oliveira DGM, Kurz MHS, Gonçalves FF, Scheeren CW, Rosa GR (2014) Palladium nanoparticles supported in a polymeric membrane: an efficient phosphine-free “green” catalyst for Suzuki–Miyaura reactions in water. RSC Adv 4:13446–13452. https://doi.org/10.1039/C4RA01104J

    Article  CAS  Google Scholar 

  13. Soares P, Fernandes C, Chavarria D, Borges F (2015) Microwave-assisted synthesis of 5-phenyl-2-hydroxyacetophenone derivatives by a green Suzuki coupling reaction. J Chem Educ 92:575–578. https://doi.org/10.1021/ed400498w

    Article  CAS  Google Scholar 

  14. Cohen A, Crozet MD, Rathelot P, Vanelle P (2009) An efficient aqueous microwave- assisted Suzuki–Miyaura cross-coupling reaction in the thiazole series. Green Chem 11:1736–1742. https://doi.org/10.1039/B916123F

    Article  CAS  Google Scholar 

  15. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–282. https://doi.org/10.1016/S0040-4039(00)83996-9

    Article  CAS  Google Scholar 

  16. Giguere RJ, Bray TL, Duncan SM (1986) Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27:4945–4948. https://doi.org/10.1016/S0040-4039(00)85103-5

    Article  CAS  Google Scholar 

  17. Hajipour AR, Karami K, Pirisedigh A (2009) Accelerated Heck reaction using ortho- palladated complex with controlled microwave heating. Appl Organomet Chem 23:504–511. https://doi.org/10.1002/aoc.1556

    Article  CAS  Google Scholar 

  18. Bakherad M, Jajarmi S (2013) A dithizone-functionalized polystyrene resin-supported Pd(II) complex as an effective catalyst for Suzuki, Heck, and copper-free Sonogashira reactions under aerobic conditions in water. J Mol Catal A: Chem 370:152–159. https://doi.org/10.1016/j.molcata.2013.01.009

    Article  CAS  Google Scholar 

  19. Hajipour AR, Azizi G (2013) Iron-catalyzed cross-coupling reaction: recyclable heterogeneous iron catalyst for selective olefination of aryl iodides in poly(ethylene glycol) medium. Green Chem 15:1030–1034. https://doi.org/10.1039/C3GC36761D

    Article  CAS  Google Scholar 

  20. Keshipour S, Shojaei S, Shaabani A (2013) Palladium nano-particles supported on ethylenediamine functionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose 20:973–980. https://doi.org/10.1007/s10570-012-9852-8

    Article  CAS  Google Scholar 

  21. Khazaei A, Rahmati S, Hekmatian Z, Saeednia S (2013) A green approach for the synthesis of palladium nanoparticles supported on pectin: application as a catalyst for solvent-free Mizoroki-Heck reaction. J Mol Catal A: Chem 372:160–166. https://doi.org/10.1016/j.molcata.2013.02.023

    Article  CAS  Google Scholar 

  22. Li X, Wang L-C, Chang H-H, Zhang C-X, Wei W-L (2013) Mizoroki–Heck coupling reactions of arenediazoniumtetrafluoroborate salts catalyzed by aluminium hydroxide- supported palladium nanoparticles. Appl Catal A 462–463:15–22. https://doi.org/10.1016/j.apcata.2013.04.009

    Article  CAS  Google Scholar 

  23. Liu Y, Wang Y, Long E (2014) PEG-modified N-heterocyclic carbene ligands for highly efficient and recyclable Pd-catalyzed Heck reaction in water. Transit Met Chem 39:11–15. https://doi.org/10.1007/s11243-013-9765-x

    Article  CAS  Google Scholar 

  24. Salabert J, Sebastián RM, Vallribera A, Cívicos JF, Nájera C (2013) Heck–Matsuda reaction of arenediazonium salts in water. Tetrahedron 69:2655–2659. https://doi.org/10.1016/j.tet.2013.01.049

    Article  CAS  Google Scholar 

  25. Wang Y, Yang Q, Yang L, Shi J, Zhang M (2013) A novel N–O ligand for palladium- catalyzed Mizoroki–Heck reaction in neat water. Tetrahedron Lett 54:5314–5317. https://doi.org/10.1016/j.tetlet.2013.07.097

    Article  CAS  Google Scholar 

  26. Yang J, Wang D, Liu W, Zhang X, Bian F, Yu W (2013) Palladium supported on a magnetic microgel: an efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chem 15:3429–3437. https://doi.org/10.1039/C3GC40941D

    Article  CAS  Google Scholar 

  27. Firouzabadi H, Iranpoor N, Gholinejad M, Akbari S, Jeddi N (2014) Palladium nanoparticles supported on agarose functionalized magnetic nanoparticles of Fe3O4 as a recyclable catalyst for C–C bond formation via Suzuki–Miyaura, Heck–Mizoroki and Sonogashira–Hagihara coupling reactions. RSC Adv 4:17060–17070. https://doi.org/10.1039/C4RA00900B

    Article  CAS  Google Scholar 

  28. Hervé G, Len C (2014) First ligand-free, microwave-assisted, Heck cross coupling reaction in pure water on a nucleoside—application to the synthesis of antiviral BVDU. RSC Adv 4:46926–46929. https://doi.org/10.1039/c4ra09798j

    Article  Google Scholar 

  29. Nabid MR, Bide Y (2014) H40-PCL-PEG unimolecular micelles both as anchoring sites for palladium nanoparticles and micellar catalyst for Heck reaction in water. Appl Catal A 469:183–190. https://doi.org/10.1016/j.apcata.2013.09.016

    Article  CAS  Google Scholar 

  30. Nehra P, Khungar B, Pericherla K, Sivasubramanian SC, Kumar A (2014) Imidazolium ionic liquid-tagged palladium complex: an efficient catalyst for the Heck and Suzuki reactions in aqueous media. Green Chem 16:4266–4271. https://doi.org/10.1039/C4GC00525B

    Article  CAS  Google Scholar 

  31. Parker HL, Sherwood J, Hunt AJ, Clark JH (2014) Cyclic carbonates as green alternative solvents for the Heck reaction. ACS Sustain Chem Eng 2:1739–1742. https://doi.org/10.1021/sc5002287

    Article  CAS  Google Scholar 

  32. Puthiaraj P, Pitchumani K (2014) Palladium nanoparticles supported on triazine functionalised mesoporous covalent organic polymers as efficient catalysts for Mizoroki–Heck cross coupling reaction. Green Chem 16:4223–4233. https://doi.org/10.1039/C4GC00412D

    Article  CAS  Google Scholar 

  33. Sharavath V, Ghosh S (2014) Palladium nanoparticles on noncovalently functionalized graphene-based heterogeneous catalyst for the Suzuki–Miyaura and Heck–Mizoroki reactions in water. RSC Adv 4:48322–48330. https://doi.org/10.1039/C4RA06868H

    Article  CAS  Google Scholar 

  34. Zhao X, Liu X, Lu M (2014) β-Cyclodextrin-capped palladium nanoparticle catalyzed ligand-free Suzuki and Heck couplings in low-melting β-cyclodextrin/NMU mixtures. Appl Organomet Chem 28:635–640. https://doi.org/10.1002/aoc.3173

    Article  CAS  Google Scholar 

  35. Baruah D, Das RN, Hazarika S, Konwar D (2015) Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb—a green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal Commun 72:73–80. https://doi.org/10.1016/j.catcom.2015.09.011

    Article  CAS  Google Scholar 

  36. Fortea-Pérez FR, Rothenpieler BL, Marino N, Armentano D, Munno GD, Julve M, Stiriba S-E (2015) Bis(N-substituted oxamate)palladate(II) complexes as effective catalysts for sustainable Heck carbon–carbon coupling reactions in n-Bu4NBr as solvent. Inorg Chem Front 2:1029–1039. https://doi.org/10.1039/C5QI00093A

    Article  CAS  Google Scholar 

  37. Khazaei A, Khazaei M, Rahmati S (2015) A green method for the synthesis of gelatin/pectin stabilized palladium nanoparticles as efficient heterogeneous catalyst for solvent-free Mizoroki–Heck reaction. J Mol Catal A: Chem 398:241–247. https://doi.org/10.1016/j.molcata.2014.12.013

    Article  CAS  Google Scholar 

  38. Kutonova KV, Trusova ME, Stankevich AV, Postnikov PS, Filimonov VD (2015) Matsuda–Heck reaction with arenediazonium tosylates in water. Beilstein J Org Chem 11:358–362. https://doi.org/10.3762/bjoc.11.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao W-T, Yang X-J, Tseng Y-Y, Wu C-C, Liu L-J, Tsai F-Y (2015) Mizoroki–Heck reaction of aryl halides and dialkyl allylphosphonates in water catalyzed by reusable palladium nanoparticles. Asian J Org Chem 4:1112–1119. https://doi.org/10.1002/ajoc.201500232

    Article  CAS  Google Scholar 

  40. Liu W, Li L, Chen Z, Li C-J (2015) A transition-metal-free Heck-type reaction between alkenes and alkyl iodides enabled by light in water. Org Biomol Chem 13:6170–6174. https://doi.org/10.1039/c5ob00515a

    Article  CAS  PubMed  Google Scholar 

  41. Liu W, Wang D, Duan Y, Zhang Y, Bian F (2015) Palladium supported on poly(ionic liquid) entrapped magnetic nanoparticles as a highly efficient and reusable catalyst for the solvent-free Heck reaction. Tetrahedron Lett 56:1784–1789. https://doi.org/10.1016/j.tetlet.2015.02.047

    Article  CAS  Google Scholar 

  42. Mandegani Z, Asadi M, Asadi Z, Mohajeri A, Iranpoor N, Omidvar A (2015) A nano tetraimine Pd(0) complex: synthesis, characterization, computational studies and catalytic applications in the Heck–Mizoroki reaction in water. Green Chem 17:3326–3337. https://doi.org/10.1039/C5GC00616C

    Article  CAS  Google Scholar 

  43. Martínez AV, Invernizzi F, Leal A, Mayoral JA, García JI (2015) Microwaves-promoted solventless Mizoroki–Heck reactions catalysed by Pd nanoparticles supported on laponite clay. RSC Adv 5:10102–10109. https://doi.org/10.1039/C4RA15418E

    Article  CAS  Google Scholar 

  44. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Bagherzadeh M (2015) Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J Colloid Interface Sci 448:106–113. https://doi.org/10.1016/j.jcis.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  45. Putta C, Sharavath V, Sarkar S, Ghosh S (2015) Palladium nanoparticles on β-cyclodextrin functionalised graphene nanosheets: a supramolecular based heterogeneous catalyst for C–C coupling reactions under green reaction conditions. RSC Adv 5:6652–6660. https://doi.org/10.1039/C4RA14323J

    Article  CAS  Google Scholar 

  46. Shen C, Shen H, Yang M, Xia C, Zhang P (2015) Novel D-glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki–Heck reactions and its application in the synthesis of Axitinib. Green Chem 17:225–230. https://doi.org/10.1039/C4GC01606H

    Article  CAS  Google Scholar 

  47. Veisi H, Faraji AR, Hemmati S, Gil A (2015) Green synthesis of palladium nanoparticles using Pistacia atlantica kurdica gum and their catalytic performance in Mizoroki–Heck and Suzuki–Miyaura coupling reactions in aqueous solutions. Appl Organomet Chem 29:517–523. https://doi.org/10.1002/aoc.3325

    Article  CAS  Google Scholar 

  48. Wang D, Liu W, Bian F, Yu W (2015) Magnetic polymer nanocomposite-supported Pd: an efficient and reusable catalyst for the Heck and Suzuki reactions in water. New J Chem 39:2052–2059. https://doi.org/10.1039/C4NJ01581A

    Article  CAS  Google Scholar 

  49. Camp JE, Dunsford JJ, Dacosta OSG, Blundell RK, Adams J, Britton J, Smith RJ, Bousfield TW, Fay MW (2016) Recyclable glucose-derived palladium(0) nanoparticles as in situ-formed catalysts for cross-coupling reactions in aqueous media. RSC Adv 6:16115–16121. https://doi.org/10.1039/C5RA25712C

    Article  CAS  Google Scholar 

  50. Ghorbani-Choghamarani A, Tahmasbi B, Moradi P (2016) Palladium-S-propyl-2- aminobenzothioate immobilized on Fe3O4 magnetic nanoparticles as catalyst for Suzuki and Heck reactions in water or poly(ethylene glycol). Appl Organomet Chem 30:422–430. https://doi.org/10.1002/aoc.3449

    Article  CAS  Google Scholar 

  51. Marulasiddeshwara MB, Kumar PR (2016) Synthesis of Pd(0) nanocatalyst using lignin in water for Mizoroki–Heck reaction under solvent-free conditions. Int J Biol Macromol 83:326–334. https://doi.org/10.1016/j.ijbiomac.2015.11.034

    Article  CAS  PubMed  Google Scholar 

  52. Rezaei SJT (2017) PEDOT nanofiber/Pd(0) composite-mediated aqueous Mizoroki–Heck reactions under ultrasonic irradiation: an efficient and green method for the C–C cross-coupling reactions. J Iran Chem Soc 14:585–594. https://doi.org/10.1007/s13738-016-1007-7

    Article  CAS  Google Scholar 

  53. Taira T, Yanagimoto T, Sakai K, Sakai H, Endo A, Imura T (2016) Synthesis of surface- active N-heterocyclic carbene ligand and its Pd-catalyzed aqueous Mizoroki–Heck reaction. Tetrahedron 72:4117–4122. https://doi.org/10.1016/j.tet.2016.05.053

    Article  CAS  Google Scholar 

  54. Zarghani M, Akhlaghinia B (2016) Green and efficient procedure for Suzuki–Miyaura and Mizoroki–Heck coupling reactions using palladium catalyst supported on phosphine functionalized ZrO2 NPs (ZrO2@ECP-Pd) as a new reusable nanocatalyst. Bull Chem Soc Jpn 89:1192–1200. https://doi.org/10.1246/bcsj.20160163

    Article  CAS  Google Scholar 

  55. Jadhav SN, Rode CV (2017) An efficient palladium catalyzed Mizoroki–Heck cross-coupling in water. Green Chem 19:5958–5970. https://doi.org/10.1039/C7GC02869E

    Article  CAS  Google Scholar 

  56. Lee H-S, Pai S-H, Liao W-T, Yang X-J, Tsai F-Y (2017) Mono and double Mizoroki–Heck reaction of aryl halides with dialkyl vinylphosphonates using a reusable palladium catalyst under aqueous medium. RSC Adv 7:34293–34299. https://doi.org/10.1039/c7ra06464k

    Article  CAS  Google Scholar 

  57. Sawant SD, Srinivas M, Kumar KAA, Reddy GL, Singh PP, Singh B, Sharma AK, Sharma PR, Vishwakarma RA (2013) Ligand-free C–N bond formation in aqueous medium using a reusable Cu–Mn bimetallic catalyst. Tetrahedron Lett 54:5351–5354. https://doi.org/10.1016/j.tetlet.2013.07.095

    Article  CAS  Google Scholar 

  58. Gogoi A, Sarmah G, Dewan A, Bora U (2014) Unique copper-salen complex: an efficient catalyst for N-arylations of anilines and imidazoles at room temperature. Tetrahedron Lett 55:31–35. https://doi.org/10.1016/j.tetlet.2013.10.084

    Article  CAS  Google Scholar 

  59. Nasrollahzadeh M, Ehsani A, Maham M (2014) Copper-catalyzed N-arylation of sulfonamides with boronic acids in water under ligand-free and aerobic conditions. Synlett 25:0505–0508. https://doi.org/10.1055/s-0033-1340475

    Article  CAS  Google Scholar 

  60. Lu G-p, Cai C, Lipshutz BH (2013) Stille couplings in water at room temperature. Green Chem 15:105–109. https://doi.org/10.1039/C2GC36042J

    Article  CAS  Google Scholar 

  61. Wu W-Y, Liu L-J, Chang F-P, Cheng Y-L, Tsai F-Y (2016) A highly efficient and reusable palladium(II)/cationic 2,2′-bipyridyl-catalyzed Stille coupling in water. Molecules 21:1205–1216. https://doi.org/10.3390/molecules21091205

    Article  CAS  PubMed Central  Google Scholar 

  62. Kolychev EL, Asachenko AF, Dzhevakov PB, Bush AA, Shuntikov VV, Khrustalev VN, Nechaev MS (2013) Expanded ring diaminocarbene palladium complexes: synthesis, structure, and Suzuki–Miyaura cross-coupling of heteroaryl chlorides in water. Dalton Trans 42:6859–6866. https://doi.org/10.1039/C3DT32860K

    Article  CAS  PubMed  Google Scholar 

  63. Ramgren SD, Hie L, Ye Y, Garg NK (2013) Nickel-catalyzed Suzuki–Miyaura couplings in green solvents. Org Lett 15:3950–3953. https://doi.org/10.1021/ol401727y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sartori G, Hervé G, Enderlin G, Len C (2013) New efficient approach for the ligand-free Suzuki–Miyaura reaction of 5-iodo-2′-deoxyuridine in water. Synthesis 45:0330–0333. https://doi.org/10.1055/s-0032-1317847

    Article  CAS  Google Scholar 

  65. Veerakumar P, Velayudham M, Lu K-L, Rajagopal S (2013) Silica-supported PEI capped nanopalladium as potential catalyst in Suzuki, Heck and Sonogashira coupling reactions. Appl Catal A 455:247–260. https://doi.org/10.1016/j.apcata.2013.01.021

    Article  CAS  Google Scholar 

  66. Lee J-Y, Ghosh D, Lee J-Y, Wu S-S, Hu C-H, Liu S-D, Lee HM (2014) Zwitterionic palladium complexes: room-temperature Suzuki–Miyaura cross-coupling of sterically hindered substrates in an aqueous medium. Organometallics 33:6481–6492. https://doi.org/10.1021/om500834y

    Article  CAS  Google Scholar 

  67. Razavi N, Akhlaghinia B, Jahanshahi R (2017) Aminophosphine palladium(0) complex supported on ZrO2 nanoparticles (ZrO2@AEPH2-PPh2-Pd(0)) as an efficient heterogeneous catalyst for Suzuki–Miyaura and Heck–Mizoroki reactions in green media. Catal Lett 147:360–373. https://doi.org/10.1007/s10562-016-1944-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to GC University, Faisalabad, for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Fawad Zahoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, M., Zahoor, A.F., Akhtar, R. et al. Development of green methodologies for Heck, Chan–Lam, Stille and Suzuki cross-coupling reactions. Mol Divers 24, 821–839 (2020). https://doi.org/10.1007/s11030-019-09988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09988-7

Keywords

Navigation