Skip to main content
Log in

A green method for the synthesis of pyrrole derivatives using arylglyoxals, 1,3-diketones and enaminoketones in water or water–ethanol mixture as solvent

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Three-component reaction between arylglyoxals, 1,3-dicetones and enaminoketones leads to new polyfunctionalized tetraone derivatives which may be easily converted to polyfunctionalized pyrroles. Reactions were conducted in water or water–ethanol mixture as green solvents, and all products were isolated by simple washing of the resulting solids with diethyl ether.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gholap SS (2015) Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 110:13–31. https://doi.org/10.1016/j.ejmech.2015.12.017

    Article  CAS  Google Scholar 

  2. Fan H, Peng J, Hamann MT, Hu JF (2008) Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem Rev 108:264–287. https://doi.org/10.1021/cr078199m

    Article  CAS  Google Scholar 

  3. Bürli RW, McMinn D, Kaizerman JA, Hu W, Ge Y, Pack Q, Jiang V, Gross M, Garcia M, Tanaka R, Moser HE (2003) DNA binding ligands targeting drug-resistant gram-positive bacteria. Part 1: internal benzimidazole derivatives. Bioorg Med Chem Lett 14:1253–1257. https://doi.org/10.1016/j.bmcl.2003.12.042

    Article  CAS  Google Scholar 

  4. Narule MN, Gaidhane MK, Gaidhane PK (2013) Synthesis, characterization, biologically and antioxidant active of some 2-substitued 3, 5-dimethyl-4-ethoxycarbonylpyrrole derivatives. J Pharm Res 6:626–632. https://doi.org/10.1016/j.jopr.2013.04.046

    Article  CAS  Google Scholar 

  5. Battilocchio C, Poce G, Alfonso S, Porretta GC, Consalvi S, Sautebin L, Pace S, Rossi A, Ghelardini C, Mannelli LDC, Schenone S (2013) A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity. Bioorg Med Chem 21:3695–3701. https://doi.org/10.1016/j.bmc.2013.04.031

    Article  CAS  Google Scholar 

  6. Joshi SD, Dixit SR, Kirankumar MN, Aminabhavi TM, Raju KVSN, Narayan R, Lherbet C, Yang KS (2015) Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur J Med Chem 107:133–152. https://doi.org/10.1016/j.ejmech.2015.10.047

    Article  CAS  Google Scholar 

  7. Kamal A, Ramakrishna G, Nayak VL, Raju P, Rao AS, Viswanath A, Vishnuvardhan MVPS, Ramakrishna S, Srinivas G (2012) Design and synthesis of benzo[c, d]indolone-pyrrolobenzodiazepine conjugates as potential anticancer agents. Bioorg Med Chem 20:789–800. https://doi.org/10.1016/j.bmc.2011.12.003

    Article  CAS  Google Scholar 

  8. Estevez V, Villacampa M, Menendez JC (2010) Multicomponent reactions for the synthesis of pyrroles. Chem Soc Rev 39:4402–4421. https://doi.org/10.1039/B917644F

    Article  CAS  Google Scholar 

  9. Fernandes E, Costa D, Toste SA, Lima JL, Reis S (2004) In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radic Biol Med 37:1895–1905. https://doi.org/10.1016/j.freeradbiomed.2004.09.001

    Article  CAS  Google Scholar 

  10. Biava M, Porretta GC, Poce G, De Logu A, Meleddu R, De Rossi E, Manetti F, Botta M (2009) 1, 5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: design, synthesis, and microbiological evaluation. Eur J Med Chem 44:4734–4738. https://doi.org/10.1016/j.ejmech.2009.06.005

    Article  CAS  Google Scholar 

  11. Biava M, Porretta GC, Poce G, Supino S, Deidda D, Pompei R, Molicotti P, Manetti F, Botta M (2006) Antimycobacterial agents. Novel diarylpyrrole derivatives of BM212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity. J Med Chem 49:4946–4952. https://doi.org/10.1021/jm0602662

    Article  CAS  Google Scholar 

  12. Ye Z, Shi L, Shao X, Xu X, Xu Z, Li Z (2013) Pyrrole-and dihydropyrrole-fused neonicotinoids: design, synthesis, and insecticidal evaluation. J Agric Food Chem 61:312–319. https://doi.org/10.1021/jf3044132

    Article  CAS  Google Scholar 

  13. Roomi MW, MacDonald SF (1970) The Hantzsch pyrrole synthesis. Can J Chem 48:1689–1697. https://doi.org/10.1139/v70-279

    Article  CAS  Google Scholar 

  14. Bonnaterre F, Bois-Choussy M, Zhu J (2006) Rapid access to oxindoles by the combined use of an Ugi four-component reaction and a microwave-assisted intramolecular Buchwald–Hartwig amidation reaction. Org Lett 8:4351–4354. https://doi.org/10.1021/ol061755z

    Article  CAS  Google Scholar 

  15. Wang B, Gu Y, Luo C, Yang T, Yang L, Suo J (2004) Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste. Tetrahedron Lett 45:3369–3372. https://doi.org/10.1016/j.tetlet.2004.03.017

    Article  CAS  Google Scholar 

  16. Estévez V, Villacampa M, Menéndez JC (2014) Recent advances in the synthesis of pyrroles by multi-component reactions. Chem Soc Rev 43:4633–4657. https://doi.org/10.1039/C3CS60015G

    Article  Google Scholar 

  17. Tzankova D, Vladimirova S, Peikova L, Georgieva M (2018) Synthesis of pyrrole and substituted pyrroles. J Chem Techol Metall 53:446–451

    Google Scholar 

  18. Sharma A, Piplani P (2017) Microwave activated synthesis of pyrroles: a short review. J Heterocycl Chem 54:27–34. https://doi.org/10.1002/jhet.2550

    Article  CAS  Google Scholar 

  19. Jones RA, Bean GP (2013) The chemistry of pyrroles: organic chemistry: a series of monographs. Academic Press, Cambridge

    Google Scholar 

  20. Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P (2015) Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 5:15233–15266. https://doi.org/10.1039/C4RA15710A

    Article  CAS  Google Scholar 

  21. Jiang B, Li QY, Zhang H, Tu SJ, Pindi S, Li G (2012) Efficient domino approaches to multifunctionalized fused pyrroles and dibenzo[b, e][1, 4]diazepin-1-ones. Org Lett 14:700–703. https://doi.org/10.1021/ol203166c

    Article  CAS  Google Scholar 

  22. Jiang B, Yi MS, Shi F, Tu SJ, Pindi S, McDowell P, Li G (2011) A multi-component domino reaction for the direct access to polyfunctionalized indoles via intermolecular allylic esterification and indolation. Chem Commun 48:808–810. https://doi.org/10.1039/C1CC15913E

    Article  Google Scholar 

  23. Eftekhari-Sis B, Zirak M, Akbari A (2013) Arylglyoxals in synthesis of heterocyclic compounds. Chem Rev 113:2958–3043. https://doi.org/10.1021/cr300176g

    Article  CAS  Google Scholar 

  24. Bayat M, Nasri S, Notash B (2017) Synthesis of new 3-cyanoacetamide pyrrole and 3-acetonitrile pyrrole derivatives. Tetrahedron 73:1522–1527. https://doi.org/10.1016/j.tet.2017.02.005

    Article  CAS  Google Scholar 

  25. Chen XB, Liu ZC, Yang LF, Yan SJ, Lin J (2014) A three-component catalyst-free approach to regioselective synthesis of dual highly functionalized fused pyrrole derivatives in water–ethanol media: thermodynamics versus kinetics. ACS Sustain Chem Eng 2:1155–1163. https://doi.org/10.1021/sc500170d

    Article  CAS  Google Scholar 

  26. Viradiya DJ, Baria BH, Kakadiya R, Kotadiya VC, Shah A (2014) Highly efficient and eco-friendly one-pot synthesis of penta substitute pyrrole derivatives under catalyst-free conditions. Int Lett Chem Phys Astron 11:257–264. https://doi.org/10.18052/www.scipress.com/ILCPA.30.257

    Article  Google Scholar 

  27. Wang H, Liu X, Feng X, Huang Z, Shi D (2013) GAP chemistry for pyrrolyl coumarin derivatives: a highly efficient one-pot synthesis under catalyst-free conditions. Green Chem 15:3307–3311. https://doi.org/10.1039/C3GC41799A

    Article  CAS  Google Scholar 

  28. Ambethkar S, Padmini V, Bhuvanesh N (2016) A one-pot sequential five-component domino reaction for the expedient synthesis of polysubstituted pyrroles. New J Chem 40:4705–4709. https://doi.org/10.1039/C5NJ03444B

    Article  CAS  Google Scholar 

  29. Mishra R, Panday AK, Choudhury LH, Pal J, Subramanian R, Verma A (2017) Multicomponent reactions of arylglyoxal, 4hydroxycoumarin, and cyclic 1, 3-C, N-binucleophiles: binucleophile-directed synthesis of fused five and six membered N-heterocycles. Chem Eur J. https://doi.org/10.1002/ejoc.201700115

    Article  Google Scholar 

  30. Wei J, Liu L, Tang DN, Wu CP, Zhao XJ, Hao WJ, Jiang B (2017) Microwave assisted three-component reactions for regioselective synthesis of functionalized benzo[e]indoles. J Heterocycl Chem 54:3403–3409. https://doi.org/10.1002/jhet.2962

    Article  CAS  Google Scholar 

  31. Ghandi M, Jourablou A, Abbasi A (2017) Synthesis of highly substituted pyrrole and dihydro1H-pyrrole containing barbituric acids via catalyst-free one-pot four-component reactions. J Heterocycl Chem 54:3108–3119. https://doi.org/10.1002/jhet.2924

    Article  CAS  Google Scholar 

  32. Karamthulla S, Jana A, Choudhury LH (2017) Synthesis of novel 5, 6-disubstituted Pyrrolo[2, 3-d]pyrimidine-2, 4-diones via one-pot three-component reactions. ACS Comb Sci 19:108–112. https://doi.org/10.1021/acscombsci.6b00147

    Article  CAS  Google Scholar 

  33. Man NN, Wang JQ, Zhang LM, Wen LR, Li M (2017) Chemo-, regio-, and stereoselective construction of core skeleton of furo[2, 3-b]pyrrole via multicomponent bicyclization reaction. J Org Chem 82:5566–5573. https://doi.org/10.1021/acs.joc.7b00371

    Article  CAS  Google Scholar 

  34. Dhinakaran I, Padmini V, Bhuvanesh N (2016) Chemodivergent, one-pot, multi-component synthesis of pyrroles and tetrahydropyridines under solvent-and catalyst-free conditions using the grinding method. ACS Comb Sci 18:236–242. https://doi.org/10.1021/acscombsci.5b00154

    Article  CAS  Google Scholar 

  35. Reinhardt D, Ilgen F, Kralisch D, König B, Kreisel G (2008) Evaluating the greenness of alternative reaction media. Green Chem 10:1170–1181. https://doi.org/10.1039/B807379A

    Article  CAS  Google Scholar 

  36. Alaimo PJ, O’Brien R, Johnson AW, Slauson SR, O’Brien JM, Tyson EL, Marshall AL, Ottinger CE, Chacon JG, Wallace L, Paulino CY (2008) Sustainable synthetic methods: domino construction of dihydropyridin-4-ones and β-amino esters in aqueous ethanol. Org Lett 10:5111–5114. https://doi.org/10.1021/ol801911f

    Article  CAS  Google Scholar 

  37. Laitinen A, Takebayashi Y, Kylänlahti I, Yli-Kauhaluoma J, Sugeta T, Otake K (2004) Ene reaction of allylbenzene and N-methylmaleimide in subcritical water and ethanol. Green Chem 6:49–52. https://doi.org/10.1039/B304959K

    Article  CAS  Google Scholar 

  38. Pai CK, Smith MB (1995) Rate enhancement in dilute salt solutions of aqueous ethanol: the Diels–Alder Reaction. J Org Chem 60:3731–3735. https://doi.org/10.1021/jo00117a026

    Article  CAS  Google Scholar 

  39. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford, pp 29–56

    Google Scholar 

  40. Grieco P (1998) Organic synthesis in water. Blackie Academic and Professional, London

    Book  Google Scholar 

  41. Li CJ, Chan TH (1994) Organic reactions in aqueous media. Wiley, New York

    Google Scholar 

  42. Lubineau A, Augé J, Queneau Y (1994) Water-promoted organic reactions. Synthesis 8:741–760. https://doi.org/10.1055/s-1994-25562

    Article  Google Scholar 

  43. Li CJ (1993) Organic reactions in aqueous media-with a focus on carbon–carbon bond formation. Chem Rev 93:2023–2035. https://doi.org/10.1021/cr030009u

    Article  CAS  Google Scholar 

  44. Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750. https://doi.org/10.1021/cr000668w

    Article  CAS  Google Scholar 

  45. Kobayashi S, Hamada T, Nagayama S, Manabe K (2001) Lanthanide trifluoromethane sulfonate-catalyzed asymmetric aldol reactions in aqueous media. Org Lett 3:165–167. https://doi.org/10.1021/ol006830z

    Article  CAS  Google Scholar 

  46. Anary-Abbasinejad M, Talebizadeh M (2014) Reaction of arylglyoxals with pyrrole or indole in aqueous media: facile synthesis of heteroaryl αacyloins. J Iran Chem Soc 11:963–968. https://doi.org/10.1007/s13738-013-0362-x

    Article  CAS  Google Scholar 

  47. Mousavizadeh F, Talebizadeh M, Anary-Abbasinejad M (2018) Synthesis of new indolylpyrrole derivatives via a four-component domino reaction between arylglyoxals, acetylacetone, indole and aliphatic amines in aqueous media. Tetrahedron Lett 59:2970–2974. https://doi.org/10.1016/j.tetlet.2018.06.043

    Article  CAS  Google Scholar 

  48. Masoudi M, Anary-Abbasinejad MA (2016) Direct phosphine-mediated synthesis of polyfunctionalized pyrroles from arylglyoxals and β-enaminones. Tetrahedron Lett 57:103–104. https://doi.org/10.1016/j.tetlet.2015.11.075

    Article  CAS  Google Scholar 

  49. Riley HA, Gray AR (1943) In Organic synthesis, vol 2. Wiley, New York, pp 509–511

    Google Scholar 

  50. Akiyama R, Kobayashi S (2009) Microencapsulated and related catalysts for organic chemistry and organic synthesis. Chem Rev 109:594–642. https://doi.org/10.1021/cr800529d

    Article  CAS  Google Scholar 

  51. Chanda A, Fokin VV (2009) Organic synthesis “on water”. Chem Rev 109:725–748. https://doi.org/10.1021/cr800448q

    Article  CAS  Google Scholar 

  52. Delhomme C, Weuster-Botz D, Kühn FE (2009) Succinic acid from renewable resources as a C 4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chem 11:13–26. https://doi.org/10.1039/b810684c

    Article  CAS  Google Scholar 

  53. Herrerias CI, Yao X, Li Z, Li CJ (2007) Reactions of C–H bonds in water. Chem Rev 107:2546–2562. https://doi.org/10.1021/cr050980b

    Article  CAS  Google Scholar 

  54. Ballini R, Barboni L, Fringuelli F, Palmieri A, Pizzo F, Vaccaro L (2007) Recent developments on the chemistry of aliphatic nitro compounds under aqueous medium. Green Chem 9:823–838. https://doi.org/10.1039/B702334K

    Article  CAS  Google Scholar 

  55. Li CJ, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82. https://doi.org/10.1039/B507207G

    Article  Google Scholar 

  56. Li CJ (2005) Organic reactions in aqueous media with a focus on carbon–carbon bond formations: a decade update. Chem Rev 105:3095–3166. https://doi.org/10.1021/cr030009u

    Article  CAS  Google Scholar 

  57. Lindström UM (2002) Stereoselective organic reactions in water. Chem Rev 102:2751–2772. https://doi.org/10.1021/cr010122p

    Article  CAS  Google Scholar 

  58. Katritzky AR, Nichols DA, Siskin M, Murugan R, Balasubramanian M (2001) Reactions in high-temperature aqueous media. Chem Rev 101:837–892. https://doi.org/10.1021/cr960103t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Vail-e-Asr University of Rafsanjan Faculty Research Grant for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Anary-Abbasinejada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anary-Abbasinejada, M., Nezhad-Shshrokhabadi, F. & Mohammadi, M. A green method for the synthesis of pyrrole derivatives using arylglyoxals, 1,3-diketones and enaminoketones in water or water–ethanol mixture as solvent. Mol Divers 24, 1205–1222 (2020). https://doi.org/10.1007/s11030-019-09984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09984-x

Keywords

Navigation