Abstract
Three-component reaction between arylglyoxals, 1,3-dicetones and enaminoketones leads to new polyfunctionalized tetraone derivatives which may be easily converted to polyfunctionalized pyrroles. Reactions were conducted in water or water–ethanol mixture as green solvents, and all products were isolated by simple washing of the resulting solids with diethyl ether.
Graphic abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gholap SS (2015) Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 110:13–31. https://doi.org/10.1016/j.ejmech.2015.12.017
Fan H, Peng J, Hamann MT, Hu JF (2008) Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem Rev 108:264–287. https://doi.org/10.1021/cr078199m
Bürli RW, McMinn D, Kaizerman JA, Hu W, Ge Y, Pack Q, Jiang V, Gross M, Garcia M, Tanaka R, Moser HE (2003) DNA binding ligands targeting drug-resistant gram-positive bacteria. Part 1: internal benzimidazole derivatives. Bioorg Med Chem Lett 14:1253–1257. https://doi.org/10.1016/j.bmcl.2003.12.042
Narule MN, Gaidhane MK, Gaidhane PK (2013) Synthesis, characterization, biologically and antioxidant active of some 2-substitued 3, 5-dimethyl-4-ethoxycarbonylpyrrole derivatives. J Pharm Res 6:626–632. https://doi.org/10.1016/j.jopr.2013.04.046
Battilocchio C, Poce G, Alfonso S, Porretta GC, Consalvi S, Sautebin L, Pace S, Rossi A, Ghelardini C, Mannelli LDC, Schenone S (2013) A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity. Bioorg Med Chem 21:3695–3701. https://doi.org/10.1016/j.bmc.2013.04.031
Joshi SD, Dixit SR, Kirankumar MN, Aminabhavi TM, Raju KVSN, Narayan R, Lherbet C, Yang KS (2015) Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur J Med Chem 107:133–152. https://doi.org/10.1016/j.ejmech.2015.10.047
Kamal A, Ramakrishna G, Nayak VL, Raju P, Rao AS, Viswanath A, Vishnuvardhan MVPS, Ramakrishna S, Srinivas G (2012) Design and synthesis of benzo[c, d]indolone-pyrrolobenzodiazepine conjugates as potential anticancer agents. Bioorg Med Chem 20:789–800. https://doi.org/10.1016/j.bmc.2011.12.003
Estevez V, Villacampa M, Menendez JC (2010) Multicomponent reactions for the synthesis of pyrroles. Chem Soc Rev 39:4402–4421. https://doi.org/10.1039/B917644F
Fernandes E, Costa D, Toste SA, Lima JL, Reis S (2004) In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radic Biol Med 37:1895–1905. https://doi.org/10.1016/j.freeradbiomed.2004.09.001
Biava M, Porretta GC, Poce G, De Logu A, Meleddu R, De Rossi E, Manetti F, Botta M (2009) 1, 5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: design, synthesis, and microbiological evaluation. Eur J Med Chem 44:4734–4738. https://doi.org/10.1016/j.ejmech.2009.06.005
Biava M, Porretta GC, Poce G, Supino S, Deidda D, Pompei R, Molicotti P, Manetti F, Botta M (2006) Antimycobacterial agents. Novel diarylpyrrole derivatives of BM212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity. J Med Chem 49:4946–4952. https://doi.org/10.1021/jm0602662
Ye Z, Shi L, Shao X, Xu X, Xu Z, Li Z (2013) Pyrrole-and dihydropyrrole-fused neonicotinoids: design, synthesis, and insecticidal evaluation. J Agric Food Chem 61:312–319. https://doi.org/10.1021/jf3044132
Roomi MW, MacDonald SF (1970) The Hantzsch pyrrole synthesis. Can J Chem 48:1689–1697. https://doi.org/10.1139/v70-279
Bonnaterre F, Bois-Choussy M, Zhu J (2006) Rapid access to oxindoles by the combined use of an Ugi four-component reaction and a microwave-assisted intramolecular Buchwald–Hartwig amidation reaction. Org Lett 8:4351–4354. https://doi.org/10.1021/ol061755z
Wang B, Gu Y, Luo C, Yang T, Yang L, Suo J (2004) Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste. Tetrahedron Lett 45:3369–3372. https://doi.org/10.1016/j.tetlet.2004.03.017
Estévez V, Villacampa M, Menéndez JC (2014) Recent advances in the synthesis of pyrroles by multi-component reactions. Chem Soc Rev 43:4633–4657. https://doi.org/10.1039/C3CS60015G
Tzankova D, Vladimirova S, Peikova L, Georgieva M (2018) Synthesis of pyrrole and substituted pyrroles. J Chem Techol Metall 53:446–451
Sharma A, Piplani P (2017) Microwave activated synthesis of pyrroles: a short review. J Heterocycl Chem 54:27–34. https://doi.org/10.1002/jhet.2550
Jones RA, Bean GP (2013) The chemistry of pyrroles: organic chemistry: a series of monographs. Academic Press, Cambridge
Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P (2015) Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv 5:15233–15266. https://doi.org/10.1039/C4RA15710A
Jiang B, Li QY, Zhang H, Tu SJ, Pindi S, Li G (2012) Efficient domino approaches to multifunctionalized fused pyrroles and dibenzo[b, e][1, 4]diazepin-1-ones. Org Lett 14:700–703. https://doi.org/10.1021/ol203166c
Jiang B, Yi MS, Shi F, Tu SJ, Pindi S, McDowell P, Li G (2011) A multi-component domino reaction for the direct access to polyfunctionalized indoles via intermolecular allylic esterification and indolation. Chem Commun 48:808–810. https://doi.org/10.1039/C1CC15913E
Eftekhari-Sis B, Zirak M, Akbari A (2013) Arylglyoxals in synthesis of heterocyclic compounds. Chem Rev 113:2958–3043. https://doi.org/10.1021/cr300176g
Bayat M, Nasri S, Notash B (2017) Synthesis of new 3-cyanoacetamide pyrrole and 3-acetonitrile pyrrole derivatives. Tetrahedron 73:1522–1527. https://doi.org/10.1016/j.tet.2017.02.005
Chen XB, Liu ZC, Yang LF, Yan SJ, Lin J (2014) A three-component catalyst-free approach to regioselective synthesis of dual highly functionalized fused pyrrole derivatives in water–ethanol media: thermodynamics versus kinetics. ACS Sustain Chem Eng 2:1155–1163. https://doi.org/10.1021/sc500170d
Viradiya DJ, Baria BH, Kakadiya R, Kotadiya VC, Shah A (2014) Highly efficient and eco-friendly one-pot synthesis of penta substitute pyrrole derivatives under catalyst-free conditions. Int Lett Chem Phys Astron 11:257–264. https://doi.org/10.18052/www.scipress.com/ILCPA.30.257
Wang H, Liu X, Feng X, Huang Z, Shi D (2013) GAP chemistry for pyrrolyl coumarin derivatives: a highly efficient one-pot synthesis under catalyst-free conditions. Green Chem 15:3307–3311. https://doi.org/10.1039/C3GC41799A
Ambethkar S, Padmini V, Bhuvanesh N (2016) A one-pot sequential five-component domino reaction for the expedient synthesis of polysubstituted pyrroles. New J Chem 40:4705–4709. https://doi.org/10.1039/C5NJ03444B
Mishra R, Panday AK, Choudhury LH, Pal J, Subramanian R, Verma A (2017) Multicomponent reactions of arylglyoxal, 4hydroxycoumarin, and cyclic 1, 3-C, N-binucleophiles: binucleophile-directed synthesis of fused five and six membered N-heterocycles. Chem Eur J. https://doi.org/10.1002/ejoc.201700115
Wei J, Liu L, Tang DN, Wu CP, Zhao XJ, Hao WJ, Jiang B (2017) Microwave assisted three-component reactions for regioselective synthesis of functionalized benzo[e]indoles. J Heterocycl Chem 54:3403–3409. https://doi.org/10.1002/jhet.2962
Ghandi M, Jourablou A, Abbasi A (2017) Synthesis of highly substituted pyrrole and dihydro1H-pyrrole containing barbituric acids via catalyst-free one-pot four-component reactions. J Heterocycl Chem 54:3108–3119. https://doi.org/10.1002/jhet.2924
Karamthulla S, Jana A, Choudhury LH (2017) Synthesis of novel 5, 6-disubstituted Pyrrolo[2, 3-d]pyrimidine-2, 4-diones via one-pot three-component reactions. ACS Comb Sci 19:108–112. https://doi.org/10.1021/acscombsci.6b00147
Man NN, Wang JQ, Zhang LM, Wen LR, Li M (2017) Chemo-, regio-, and stereoselective construction of core skeleton of furo[2, 3-b]pyrrole via multicomponent bicyclization reaction. J Org Chem 82:5566–5573. https://doi.org/10.1021/acs.joc.7b00371
Dhinakaran I, Padmini V, Bhuvanesh N (2016) Chemodivergent, one-pot, multi-component synthesis of pyrroles and tetrahydropyridines under solvent-and catalyst-free conditions using the grinding method. ACS Comb Sci 18:236–242. https://doi.org/10.1021/acscombsci.5b00154
Reinhardt D, Ilgen F, Kralisch D, König B, Kreisel G (2008) Evaluating the greenness of alternative reaction media. Green Chem 10:1170–1181. https://doi.org/10.1039/B807379A
Alaimo PJ, O’Brien R, Johnson AW, Slauson SR, O’Brien JM, Tyson EL, Marshall AL, Ottinger CE, Chacon JG, Wallace L, Paulino CY (2008) Sustainable synthetic methods: domino construction of dihydropyridin-4-ones and β-amino esters in aqueous ethanol. Org Lett 10:5111–5114. https://doi.org/10.1021/ol801911f
Laitinen A, Takebayashi Y, Kylänlahti I, Yli-Kauhaluoma J, Sugeta T, Otake K (2004) Ene reaction of allylbenzene and N-methylmaleimide in subcritical water and ethanol. Green Chem 6:49–52. https://doi.org/10.1039/B304959K
Pai CK, Smith MB (1995) Rate enhancement in dilute salt solutions of aqueous ethanol: the Diels–Alder Reaction. J Org Chem 60:3731–3735. https://doi.org/10.1021/jo00117a026
Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford, pp 29–56
Grieco P (1998) Organic synthesis in water. Blackie Academic and Professional, London
Li CJ, Chan TH (1994) Organic reactions in aqueous media. Wiley, New York
Lubineau A, Augé J, Queneau Y (1994) Water-promoted organic reactions. Synthesis 8:741–760. https://doi.org/10.1055/s-1994-25562
Li CJ (1993) Organic reactions in aqueous media-with a focus on carbon–carbon bond formation. Chem Rev 93:2023–2035. https://doi.org/10.1021/cr030009u
Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750. https://doi.org/10.1021/cr000668w
Kobayashi S, Hamada T, Nagayama S, Manabe K (2001) Lanthanide trifluoromethane sulfonate-catalyzed asymmetric aldol reactions in aqueous media. Org Lett 3:165–167. https://doi.org/10.1021/ol006830z
Anary-Abbasinejad M, Talebizadeh M (2014) Reaction of arylglyoxals with pyrrole or indole in aqueous media: facile synthesis of heteroaryl αacyloins. J Iran Chem Soc 11:963–968. https://doi.org/10.1007/s13738-013-0362-x
Mousavizadeh F, Talebizadeh M, Anary-Abbasinejad M (2018) Synthesis of new indolylpyrrole derivatives via a four-component domino reaction between arylglyoxals, acetylacetone, indole and aliphatic amines in aqueous media. Tetrahedron Lett 59:2970–2974. https://doi.org/10.1016/j.tetlet.2018.06.043
Masoudi M, Anary-Abbasinejad MA (2016) Direct phosphine-mediated synthesis of polyfunctionalized pyrroles from arylglyoxals and β-enaminones. Tetrahedron Lett 57:103–104. https://doi.org/10.1016/j.tetlet.2015.11.075
Riley HA, Gray AR (1943) In Organic synthesis, vol 2. Wiley, New York, pp 509–511
Akiyama R, Kobayashi S (2009) Microencapsulated and related catalysts for organic chemistry and organic synthesis. Chem Rev 109:594–642. https://doi.org/10.1021/cr800529d
Chanda A, Fokin VV (2009) Organic synthesis “on water”. Chem Rev 109:725–748. https://doi.org/10.1021/cr800448q
Delhomme C, Weuster-Botz D, Kühn FE (2009) Succinic acid from renewable resources as a C 4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chem 11:13–26. https://doi.org/10.1039/b810684c
Herrerias CI, Yao X, Li Z, Li CJ (2007) Reactions of C–H bonds in water. Chem Rev 107:2546–2562. https://doi.org/10.1021/cr050980b
Ballini R, Barboni L, Fringuelli F, Palmieri A, Pizzo F, Vaccaro L (2007) Recent developments on the chemistry of aliphatic nitro compounds under aqueous medium. Green Chem 9:823–838. https://doi.org/10.1039/B702334K
Li CJ, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82. https://doi.org/10.1039/B507207G
Li CJ (2005) Organic reactions in aqueous media with a focus on carbon–carbon bond formations: a decade update. Chem Rev 105:3095–3166. https://doi.org/10.1021/cr030009u
Lindström UM (2002) Stereoselective organic reactions in water. Chem Rev 102:2751–2772. https://doi.org/10.1021/cr010122p
Katritzky AR, Nichols DA, Siskin M, Murugan R, Balasubramanian M (2001) Reactions in high-temperature aqueous media. Chem Rev 101:837–892. https://doi.org/10.1021/cr960103t
Acknowledgements
We gratefully acknowledge the Vail-e-Asr University of Rafsanjan Faculty Research Grant for financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Anary-Abbasinejada, M., Nezhad-Shshrokhabadi, F. & Mohammadi, M. A green method for the synthesis of pyrrole derivatives using arylglyoxals, 1,3-diketones and enaminoketones in water or water–ethanol mixture as solvent. Mol Divers 24, 1205–1222 (2020). https://doi.org/10.1007/s11030-019-09984-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11030-019-09984-x