Skip to main content
Log in

Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Due to the diverse applications of cyclopropane analogs in bioorganic, medicinal, and pharmaceutical chemistry, a clean and efficient procedure was established to synthesize spirocyclopropane via an electrochemical reaction which involves a sequence of Michael addition, halogenation, and intramolecular ring-closing reaction. In this study, an environmentally benign synthesis of spirocyclopropane was carried out through the condensation of indan-1,3-dione by aromatic aldehydes or 2-benzylidenemalononitrile derivatives. Constant current electrosynthesis was applied to a mixture of propanol containing sodium bromide as an electrolyte and a brominating agent at room temperature, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Scheme 4

References

  1. Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS (2016) Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533(7601):77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang S, Zeng C-C, Luo X-G, F-z Ren H-Y, Tian B-GS, Little RD (2016) Electrochemically catalyzed amino-oxygenation of styrenes: n-Bu 4 NI induced C-N followed by a C–O bond formation cascade for the synthesis of indolines. Green Chem 18(7):2222–2230

    Article  CAS  Google Scholar 

  3. Qian P, Su J-H, Wang Y, Bi M, Zha Z, Wang Z (2017) Electrocatalytic C–H/N–H coupling of 2′-aminoacetophenones for the synthesis of isatins. J Org Chem 82(12):6434–6440

    Article  CAS  PubMed  Google Scholar 

  4. Qian X-Y, Li S-Q, Song J, Xu H-C (2017) TEMPO-catalyzed electrochemical C–H thiolation: synthesis of benzothiazoles and thiazolopyridines from thioamides. ACS Catal 7(4):2730–2734

    Article  CAS  Google Scholar 

  5. Cardoso DS, Šljukić B, Santos DM, Sequeira CSA (2017) Organic electrosynthesis: from laboratorial practice to industrial applications. Org Process Res Dev 21(9):1213–1226

    Article  CAS  Google Scholar 

  6. Thomas A (1973) The synthesis of monoterpenes. Total Synth Nat Prod 2:1–195

    CAS  Google Scholar 

  7. Thomas AF, Bessiere Y (1981) The synthesis of monoterpenes, 1971—1979. Total Synth Nat Prod 4:451–591

    CAS  Google Scholar 

  8. Cativiela C, Daz-de-Villegas M (2000) Stereoselective synthesis of quaternary α-amino acids. Part 2: cyclic compounds. Tetrahedron Asymmetry 11(3):645–732

    Article  CAS  Google Scholar 

  9. Boger DL, Boyce CW, Garbaccio RM, Goldberg JA (1997) CC-1065 and the duocarmycins: synthetic studies. Chem Rev 97(3):787–828

    Article  CAS  PubMed  Google Scholar 

  10. Chen DY-K, Pouwer RH, Richard J-A (2012) Recent advances in the total synthesis of cyclopropane-containing natural products. Chem Soc Rev 41(13):4631–4642

    Article  CAS  PubMed  Google Scholar 

  11. Little RD, Dawson JR (1980) MIRC (Michael Initiated Ring Closure) reactions formation of three, five, six and seven membered rings. Tetrahedron Lett 21(27):2609–2612

    Article  CAS  Google Scholar 

  12. Jean Rodriguez DB, Enders D (2015) Stereoselective multiple bond-forming transformations in organic synthesis. Wiley, Hobo-ken

    Book  Google Scholar 

  13. Elinson MN, Vereshchagin AN, Ryzhkov FV (2016) Catalysis of cascade and multicomponent reactions of carbonyl compounds and C–H acids by electricity. Chem Rec 16(4):1950–1964

    Article  CAS  PubMed  Google Scholar 

  14. Elinson MN, Vereshchagin AN, Tretyakova EO, Bushmarinov IS, Nikishin GI (2011) Stereoselective Electrocatalytic Cyclization of 4, 4′-(Arylmethylene) bis (1H-pyrazol-5-ols) to (5R*, 6R*)-11-Aryl-4, 10-dimethyl-2, 8-diphenyl-2, 3, 8, 9-tetraazadispiro [4.0. 4.1] undeca-3, 9-diene-1, 7-diones. Synthesis 18:3015–3019

    Article  Google Scholar 

  15. Ferrary T, David E, Milanole G, Besset T, Jubault P, Pannecoucke X (2013) A straightforward and highly diastereoselective access to functionalized monofluorinated cyclopropanes via a michael initiated ring closure reaction. Org Lett 15(21):5598–5601. https://doi.org/10.1021/ol402837u

    Article  CAS  PubMed  Google Scholar 

  16. Russo A, Lattanzi A (2010) Stereoselective synthesis of functionalised cyclopropanes from nitroalkenes via an organocatalysed Michael-initiated ring-closure approach. Tetrahedron Asymmetry 21(9–10):1155–1157

    Article  CAS  Google Scholar 

  17. Tian B, Liu Q, Tong X, Tian P, Lin G-Q (2014) Copper(I)-catalyzed enantioselective hydroboration of cyclopropenes: facile synthesis of optically active cyclopropylboronates. Org Chem Front 1(9):1116–1122

    Article  CAS  Google Scholar 

  18. Molander GA, Harring LS (1989) Samarium-promoted cyclopropanation of allylic alcohols. J Org Chem 54(15):3525–3532

    Article  CAS  Google Scholar 

  19. Russo A, Meninno S, Tedesco C, Lattanzi A (2011) Synthesis of Activated Cyclopropanes by an MIRC Strategy: an enantioselective organocatalytic approach to spirocyclopropanes. Eur J Org Chem 26:5096–5103

    Article  Google Scholar 

  20. Wang G-W, Gao J (2009) Selective formation of spiro dihydrofurans and cyclopropanes through unexpected reaction of aldehydes with 1,3-dicarbonyl compounds. Org Lett 11(11):2385–2388

    Article  CAS  PubMed  Google Scholar 

  21. Ghorbani-Vaghei R, Maghbooli Y (2016) Synthesis of activated cyclopropanes by MHIRC strategy: a facile and efficient approach to spirocyclopropanes using N-halosulfonamides. Synthesis 48(21):3803–3811

    Article  CAS  Google Scholar 

  22. Xin X, Zhang Q, Liang Y, Zhang R, Dong D (2014) Tandem halogenation/Michael-initiated ring-closing reaction of α, β-unsaturated nitriles and activated methylene compounds: one-pot diastereoselective synthesis of functionalized cyclopropanes. Org Biomol Chem 12(15):2427–2435

    Article  CAS  PubMed  Google Scholar 

  23. Ghorbani-Vaghei R, Akbari-Dadamahaleh S (2009) Poly (N-bromo-N-ethylbenzene-1, 3-disulfonamide) and N,N,N′,N′-tetrabromobenzene-1, 3-disulfonamide as efficient reagents for synthesis of quinolines. Tetrahedron Lett 50(9):1055–1058

    Article  CAS  Google Scholar 

  24. Luthe GM, Schut BG, Aaseng JE (2009) Monofluorinated analogues of polychlorinated biphenyls (F-PCBs): Synthesis using the Suzuki-coupling, characterization, specific properties and intended use. Chemosphere 77(9):1242–1248

    Article  CAS  PubMed  Google Scholar 

  25. Kawamata Y, Yan M, Liu Z, Bao D-H, Chen J, Starr JT, Baran PS (2017) Scalable, electrochemical oxidation of unactivated C–H bonds. J Am Chem Soc 139(22):7448–7451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Makarem S, Fakhari A, Mohammadi A (2012) Electro-organic synthesis of nanosized particles of 3-hydroxy-3-(1H-indol-3-yl) indolin-2-one derivatives. Chem Mon/Monatshefte für Chemie 143(8):1157–1160

    Article  CAS  Google Scholar 

  27. Makarem S, Fakhari AR, Mohammadi AA (2012) Electro-organic synthesis of nanosized particles of 2-amino-pyranes. Ind Eng Chem Res 51(5):2200–2204

    Article  CAS  Google Scholar 

  28. Fakhari AR, Nematollahi D, Shamsipur M, Makarem S, Davarani SSH, Alizadeh A, Khavasi HR (2007) Electrochemical synthesis of 5, 6-dihydroxy-2-methyl-1-benzofuran-3-carboxylate derivatives. Tetrahedron 63(18):3894–3898

    Article  CAS  Google Scholar 

  29. Elinson MN, Feducovich SK, Starikova ZA, Vereshchagin AN, Nikishin GI (2004) Stereoselective electrocatalytic transformation of arylidenemalononitriles and malononitrile into (1R, 5S, 6R)*-6-aryl-2-amino-4, 4-dialkoxy-1, 5-dicyano-3-azabicyclo [3.1. 0] hex-2-enes. Tetrahedron 60(51):11743–11749

    Article  CAS  Google Scholar 

  30. Elinson MN, Sokolova OO, Korshunov AD, Barba F, Batanero B (2018) electrocatalytic cascade reaction of aldehydes and 4-hydroxy-6-methyl-2H-pyran-2-one. Electrocatalysis 9(5):602–607

    Article  CAS  Google Scholar 

  31. El-Gaby MSA (2004) Syntheses of hitherto unknown thiazole, ylidene and pyridinethione derivatives having a piperidin-1-yl moiety and their use as antimicrobial agents. J Chin Chem Soc 51(1):125–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Asghar Mohammadi or Somayeh Makarem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A.A., Makarem, S., Ahdenov, R. et al. Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction. Mol Divers 24, 763–770 (2020). https://doi.org/10.1007/s11030-019-09979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09979-8

Keywords

Navigation