Skip to main content
Log in

Synthesis, anti-proliferative activity, theoretical and 1H NMR experimental studies of Morita–Baylis–Hillman adducts from isatin derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Quaternary or spirocyclic 3-substituted-3-hydroxy-2-oxindole is considered a privileged scaffold. In other words, it is a molecular core present on several compounds with a wide spectrum of biological activities. Among its precursors, activated ketones (isatin nucleus) can be used as interesting starting points to Morita–Baylis–Hillman adducts derivatives, a class of compounds with good cytotoxic potential. In this paper, we present the synthesis, anti-proliferative activity against lung cancer cell line and a theoretical conformational study of 21 of Morita–Baylis–Hillman adducts from isatin derivatives, by DFT quantum chemical calculations, followed by a SAR and QSAR analysis. Besides, an efficient synthetic protocol and good biological activity profile were highlighted interesting observations about 1H NMR experimental spectra, molecular modeling results and crystallographic data available.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Peddibhotla S (2009) 3-substituted-3-hydroxy-2-oxindole, an emerging new scaffold for drug discovery with potential anti-cancer and other biological activities. Curr Bioact Compd 5:20–38. https://doi.org/10.2174/157340709787580900

    Article  CAS  Google Scholar 

  2. Welsch ME, Snyder SA, Stockwel BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361. https://doi.org/10.1016/j.cbpa.2010.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Monde K, Sasaki K, Shirata A, Takasugi M (1991) Brassicanal C and two dioxindoles from cabbage. Phytochemistry 30:2915–2917. https://doi.org/10.1016/S0031-9422(00)98224-4

    Article  CAS  Google Scholar 

  4. Lima-Junior CG, Faheina-Martins GV, Bomfim CC, Dantas BB, Silva EP, de Araújo DAM, Alencar-Filho EB, Vasconcellos MLAA (2016) Synthesis, cytotoxic activity on leukemia cell lines and quantitative structure-activity relationships (QSAR) studies of Morita–Baylis–Hillman adducts. Med Chem 8:602–612. https://doi.org/10.2174/1573406412666160506150924

    Article  CAS  Google Scholar 

  5. Lima-Junior CG, Vasconcellos MLAA (2012) Morita–Baylis–Hillman adducts: biological activities and potentialities to the discovery of new cheaper drugs. Bioorg Med Chem 20:3954–3971. https://doi.org/10.1016/j.bmc.2012.04.061

    Article  CAS  PubMed  Google Scholar 

  6. Baylis AB, Hillman MED, German patent 2155113 (1972) Chem Abstr 77 34174q1

  7. Basavaiah D, Reddy BS, Badsara SS (2010) Recent contributions from the Baylis–Hillman reaction to organic chemistry. Chem Rev 110:5447–5674. https://doi.org/10.1021/cr900291g

    Article  CAS  PubMed  Google Scholar 

  8. Santos MS, Coelho F, Lima-Junior CG, Vasconcellos MLAA (2015) The Morita–Baylis–Hillman reaction: advances and contributions from Brazilian chemistry. Curr Org Synt 12:830–852. https://doi.org/10.2174/157017941206150828114416

    Article  CAS  Google Scholar 

  9. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395. https://doi.org/10.1124/pr.112.007336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alencar Filho EB, Santos AA, Oliveira BG (2017) A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents. J Mol Struc 1133:338–347. https://doi.org/10.1016/j.molstruc.2016.12.035

    Article  CAS  Google Scholar 

  11. Pavitha P, Prashanth J, Ramu G, Ramesh G, Mamatha K, Reddy BV (2017) Synthesis, structural, spectroscopic, anti-cancer and molecular docking studies on novel 2-[(Anthracene-9-ylmethylene)amino]-2- methylpropane-1,3-diol using XRD, FTIR, NMR, UV–Vis spectra and DFT. J Mol Struc 1147:406–426. https://doi.org/10.1016/j.molstruc.2017.06.095

    Article  CAS  Google Scholar 

  12. Alencar Filho EB, Castro Silva JW, Cavalcanti SCH (2016) Quantitative structure-toxicity relationships and molecular highlights about Aedes aegypti larvicidal activity of monoterpenes and related compounds. Med Chem Res 25:2171–2178. https://doi.org/10.1007/s00044-016-1650-7

    Article  CAS  Google Scholar 

  13. Filho EBA, Moraes IA, Weber KC, Rocha GB, Vasconcellos MLAA (2012) DFT/PCM, QTAIM, 1H NMR conformational studies and QSAR modeling of thirty-two anti-Leishmania amazonensis Morita–Baylis–Hillman adducts. J Mol Struc 1022:72–80. https://doi.org/10.1016/j.molstruc.2012.04.051

    Article  CAS  Google Scholar 

  14. Bruker (2009) SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison

    Google Scholar 

  15. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R (2005) SIR2004: an improved tool for crystal structure determination and refinement. J Appl Crystallogr 38:381–388. https://doi.org/10.1107/S002188980403225XU

    Article  CAS  Google Scholar 

  16. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  17. Farrugia LJ (1997) ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). J Appl Cryst 30:565. https://doi.org/10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  18. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, Mccabe P, Pidock E, Monge LR, Taylor R, van de Streek J, Wood PA (2008) New features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  19. ACD/ChemSketch Freeware, version 12.01, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2015

  20. GaussView, Version 6, Dennington R, Keith TA, Millam JM (2016) Semichem Inc., Shawnee Mission

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven J, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  22. Stewart JJP (2007) Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  25. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  26. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VVJ (2005) Virtual computational chemistry laboratory–design and description. J Comput Aided Mol Des 19:453–463. https://doi.org/10.1007/s10822-005-8694-y

    Article  CAS  PubMed  Google Scholar 

  27. Teófilo RF, Martins JPA, Ferreira MMC (2009) Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression. J Chemom 23:32–48. https://doi.org/10.1002/cem.1192

    Article  CAS  Google Scholar 

  28. Martins JPA, Ferreira MMC (2013) QSAR modeling: a new open source computational package to generate and validate QSAR models. Quim Nova 36:554–560. https://doi.org/10.1590/S0100-40422013000400013

    Article  CAS  Google Scholar 

  29. De Oliveira DB, Gaudio AC (2000) BuildQSAR: a new computer program for QSAR analysis. Quant Struct-Activ Relat 19:599–601. https://doi.org/10.1002/1521-3838(200012)19:6%3c599:AID-QSAR599%3e3.0.CO;2-B

    Article  Google Scholar 

  30. Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787. https://doi.org/10.1590/S0103-50532009000400021

    Article  CAS  Google Scholar 

  31. da Silva BNM, Bastos RS, Silva BV, Pinto AC (2010) Síntese de 5-nitro-isatina e 5-cloro-isatina a partir da isonitrosoacetanilida. Quim Nova 33(10):2279–2282. https://doi.org/10.1590/S0100-40422010001000043

    Article  Google Scholar 

  32. de Souza ROMA, Vasconcellos MLAA (2004) Intrinsic catalytic activity of tertiary amines: a mechanistic proposal to the unexpected temperature effect in Baylis–Hillman reaction. Catal Commun 5:21–24. https://doi.org/10.1016/j.catcom.2003.11.004

    Article  CAS  Google Scholar 

  33. Lima-Junior CG, Silva FPL, Oliveira RG, Subrinho FL, Vasconcellos MLAA (2011) Microwave irradiation or low temperature improved synthesis of antiparasitic Morita–Baylis–Hillman adducts. J Braz Chem Soc 22:2220–2224. https://doi.org/10.1590/S0103-50532011001100028

    Article  Google Scholar 

  34. Cee VJ, Volak LP, Chen Y, Bartberger MD, Tegley C, Arvedson T, Mccarter J, Tasker AS, Fotsch C (2015) Systematic study of the glutathione (GSH) reactivity of N-arylacrylamides: 1. Effects of aryl substitution. J Med Chem 58:9171–9178. https://doi.org/10.1021/acs.jmedchem.5b01018

    Article  CAS  PubMed  Google Scholar 

  35. Singh RM, Bharadwaj KC, Tiwari DK (2014) Morita–Baylis–Hillman reaction of acrylamide with isatin derivatives. Beilstein J Org Chem 10:2975–2980. https://doi.org/10.3762/bjoc.10.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  37. Fortes MP, da Silva PBN, da Silva TG, Kaufman TS, Militão GCG, Silveira CC (2016) Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents. Eur J Med Chem 118:21–26. https://doi.org/10.1016/j.ejmech.2016.04.039

    Article  CAS  PubMed  Google Scholar 

  38. Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC (2010) Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 53:7902–7917. https://doi.org/10.1021/jm100762r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Donald LP, Gary ML, George SK, James RV (2009) Introduction to spectroscopy. Brooks/Cole CENGAGE Learning, USA

    Google Scholar 

  40. Ren Q, Huang J, Wang L, Li W, Liu H, Jiang X, Wang J (2012) Highly efficient assembly of 3-hydroxy oxindole scaffold via a catalytic decarboxylative 1,2-addition strategy. ACS Catal 2(12):2622–2625. https://doi.org/10.1021/cs300628w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Foundation of Support to the Science and Technology of the State of Pernambuco—FACEPE, National Council for Scientific and Technological Development––CNPQ, Coordination of Improvement of Higher Level Personnel—CAPES, Federal University of San Francisco Valley—UNIVASF, for financial support, National High-performance Processing Center of Federal University of Ceará—CENAPAD-UFC for some computational facilities as Gaussian 09 W package, Laboratory of Chromatography and Mass Spectrometry (LaCEM), Institute of Chemistry, Federal University of Goiás (Prof. Dr. Boniek Gontijo Vaz) for mass spectrometry analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudio G. Lima-Júnior or Edilson B. Alencar-Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, V.B.M., Santos, G.F., Silva, T.D.S. et al. Synthesis, anti-proliferative activity, theoretical and 1H NMR experimental studies of Morita–Baylis–Hillman adducts from isatin derivatives. Mol Divers 24, 265–281 (2020). https://doi.org/10.1007/s11030-019-09950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09950-7

Keywords

Navigation