A novel protocol for catalyst-free synthesis of fused six-member rings to triazole and pyrazole

Abstract

Herein, an effectual, quick and novel method is described for the synthesis of new triazolo[1,5-a]pyrimidine, triazolo[5,1-b][1,3] thiazine and pyrazolo[1,5-a]pyrimidine derivatives. This series of fused six-member rings to triazole and pyrazole was prepared via the catalyst-free reaction of dialkyl acetylenedicarboxylates and 3-substituted 1H-1,2,4-triazole or 3-amino-1H-pyrazole-4-carbonitrile. The structures of the prepared products were deduced from their Fourier-transform infrared, elemental analysis and proton and carbon-13 nuclear magnetic resonance spectral data.

Graphical abstract

A novel and green method is described for the synthesis of new triazolo[1,5-a]pyrimidine, triazolo[5,1-b][1,3] thiazine and pyrazolo[1,5-a]pyrimidine derivatives.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Scheme 2

References

  1. 1.

    Jin Z (2013) Muscarine, imidaozle, oxazole and thiazole alkaloids. Nat Prod Rep 30:869–915

    CAS  Article  Google Scholar 

  2. 2.

    Asif M (2014) A mini review on antimalarial activities of biologically active substituted triazole derivatives. Int J Adv Res Chem Sci 1:22–28

    Google Scholar 

  3. 3.

    Galloway WRJD, Isidro-Llobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 1:80–93

    Article  Google Scholar 

  4. 4.

    Sagar R, Moon-Ju K, Park SB (2008) Ultrasound-promoted one-Pot, three component synthesis of novel 5-amino-2-(4-chlorophenyl)-7-substituted phenyl-8,8a-dihydro-7H-[1,3,4]thiadiazolo[3,2-A]pyrimidine-6-carbonitrile derivatives. Tetrahedron Lett 49:5080–5083

    CAS  Article  Google Scholar 

  5. 5.

    Abdel-Rahman AH, Keshk EM, Hanna MA et al (2004) Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg Med Chem 12:2483–2488

    CAS  Article  Google Scholar 

  6. 6.

    Rai US, Isloor AM, Shetty P et al (2010) Novel chromeno [2,3-b]-pyrimidine derivatives as potential anti-microbial agents. Eur J Med Chem 45:2695–2699

    Article  Google Scholar 

  7. 7.

    Saito T, Obitsu T, Minamoto C et al (2011) Pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF1) receptor antagonists. Bioorg Med Chem 19:5955–5966

    CAS  Article  Google Scholar 

  8. 8.

    Yu W, Goddard C, Clearfield E et al (2011) Design, synthesis, and biological evaluation of triazolo-pyrimidine derivatives as novel inhibitors of hepatitis B virus surface antigen (HBsAg). Secret J Med Chem 54:5660–5670

    CAS  Article  Google Scholar 

  9. 9.

    Shaabani A, Seyyedhamzeh M, Ganji N, Hamidzad Sangachin M, Armaghan M (2015) One-pot four-component synthesis of highly substituted [1,2,4]triazolo[1,5-a]pyrimidines. Mol Divers 19(4):709–715

    CAS  Article  Google Scholar 

  10. 10.

    Salameh S, Abul-Haj M, Quirós M, Salas JM (2005) 1,2,4-triazolo[4,3-a]pyrimidines: a new kind of ligands. Structure of the silver(I) dimer with the 7-oxo derivative. Inorg Chim Acta 358:824–827

    CAS  Article  Google Scholar 

  11. 11.

    Boutaleb-Charki S, Marín C, Maldonado CR, Rosales MJ, Urbano J, Guitierrez-Sánchez R (2009) Copper(II) complexes of [1,2,4]triazolo [1,5-a]pyrimidine derivatives as potential anti-parasitic agents. Drug Metab Lett 3:35–44

    CAS  Article  Google Scholar 

  12. 12.

    Ruisi G, Canfora L, Bruno G, Rotondo A, Mastropietro TF, Debbia EA (2010) Triorganotin(IV) derivatives of 7-amino-2-(methylthio)[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid. Synthesis, spectroscopic characterization, in vitro antimicrobial activity and X-ray crystallography. J Organomet Chem 695:546–551

    CAS  Article  Google Scholar 

  13. 13.

    El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157

    CAS  Article  Google Scholar 

  14. 14.

    Fizer M, Slivka I (2016) Synthesis of [1,2,4]triazolo[1,5-a]pyrimidine (microreview). Chem Heterocycl Compd 52(3):155–157

    CAS  Article  Google Scholar 

  15. 15.

    Saito T, Obitsu T, Minamoto C, Sugiura T, Matsumura N, Ueno S, Kishi A (2011) Pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF1) receptor antagonists. Bioorg Med Chem 19:5955–5966

    CAS  Article  Google Scholar 

  16. 16.

    Velders AH, Bergamo A, Alessio E, Zangrando E, Haasnoot JG, Casarsa C, Cocchietto M (2004) Synthesis and chemical–pharmacological characterization of the antimetastatic NAMI-A-type Ru(III) complexes (Hdmtp)[trans-RuCl4(dmso-S)(dmtp)], (Na)[trans-RuCl4(dmso-S)(dmtp)], and [mer-RuCl3(H2O)(dmso-S)(dmtp)] (dmtp = 5,7-Dimethyl[1,2,4]triazolo[1,5-a]pyrimidine). J Med Chem 47:1110–1121

    CAS  Article  Google Scholar 

  17. 17.

    Popik P, Kostakis E, Krawczyk M, Nowak G, Szewczyk P, Krieter Z, Chen SJ, Russek TT (2006) The anxioselective agent 7-(2-Chloropyridin-4-yl)pyrazolo-[1,5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-Gated currents at α1 subunit-containing GABAA receptors. J Pharmacol Exp Ther 319:1244–1252

    CAS  Article  Google Scholar 

  18. 18.

    Raj KKV, Narayan BV, Ashalatha N, Suchita K (2006) New thiazoles containing pyrazolopyrimidine moiety as possible analgesic agents. J Pharmacol Toxicol 1:559–565

    CAS  Article  Google Scholar 

  19. 19.

    Almansa C, Merlos M, Rafanell JGA, Arriba F, Cavalcanti FL, Gomez LA, Miralles A (2001) Synthesis and SAR of a new series of COX-2-Selective inhibitors: pyrazolo[1,5-a]pyrimidines. J Med Chem 44:350–361

    CAS  Article  Google Scholar 

  20. 20.

    Kim DC, Lee YR, Yang B, Shin KJ, Kim DJ, Chung BY, Yoo KH (2003) Synthesis and biological evaluations of pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 inhibitors. Eur J Med Chem 38:525–532

    CAS  Article  Google Scholar 

  21. 21.

    Xu Y, Brenning BG, Kultgen SG, Foulks JM, Clifford A, Lai Sh (2015) Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective pim-1 inhibitors. ACS Med Chem Lett 6(1):63–67

    CAS  Article  Google Scholar 

  22. 22.

    Cervantes-Gomez F, Chen LS, Orlowski RZ, Gandhi V (2013) Biological effects of the Pim kinase inhibitor, SGI-1776, in multiple myeloma. Clin Lymphoma Myeloma Leuk 13:317–329

    Article  Google Scholar 

  23. 23.

    Wang H, Lee M, Peng Zh, Blázquez B, Lastochkin E, Kumarasiri M, Bouley R (2015) Synthesis and evaluation of 1,2,4-Triazolo[1,5-a]pyrimidines as antibacterial agents against enterococcus faecium. J Med Chem 58:4194–4203

    CAS  Article  Google Scholar 

  24. 24.

    Gavrin LK, Lee A, Provencher BA (2007) Synthesis of pyrazolo[1,5-α]pyrimidinone regioisomers. J Org Chem 72:1043–1046

    CAS  Article  Google Scholar 

  25. 25.

    Dalinger IL, Vatsadse IA, Shevelev SA (2005) Liquid-phase synthesis of combinatorial libraries based on 7-trifluoromethyl-substituted pyrazolo[1,5-a]pyrimidine scaffold. J Comb Chem 7:236–245

    CAS  Article  Google Scholar 

  26. 26.

    Kryl’skii DV, Chuvashlev AS, Arzamastsev AP, Slivkin AI (2009) Synthesis of new pyrazolo[1,5-a]pyrimidines. Pharm Chem J 43:294–296

    Article  Google Scholar 

  27. 27.

    Verma GK, Raghuvanshi K, Verma RK, Dwivedi P, Singh MS (2011) An efficient one-pot solvent-free synthesis and photophysical properties of 9-aryl/alkyl-octahydroxanthene-1,8-diones. Tetrahedron 67(20):3698–3704

    CAS  Article  Google Scholar 

  28. 28.

    Duarte RCC, Ribeiro MTC, Machado AASC (2017) Reaction scale and green chemistry: Microscale or macroscale, which is greener? J Chem Educ 94(9):1255–1264

    CAS  Article  Google Scholar 

  29. 29.

    Karami B, Farahi M, Banaki Z (2015) A new protocol for catalyst-free regioselective synthesis of 5,9-dihydropyrimido[5,4-e][1,2,4]triazolo[1,5-a]pyrimidine-6,8(4H,7H)-diones. Synlett 26(06):741–744

    CAS  Article  Google Scholar 

  30. 30.

    Karami B, Farahi M, Banaki Z (2015) A novel one-pot method for highly regioselective synthesis of triazoloapyrimidinedicarboxylates using silica sodium carbonate. Synlett 26(13):1804–1807

    CAS  Article  Google Scholar 

  31. 31.

    Karami B, Farahi M, Akrami S, Elhamifar D (2018) Tungstic acid-functionalized MCM-41 as a novel mesoporous solid acid catalyst for the one-pot synthesis of new pyrrolo[2,1-a]isoquinolines. New J Chem 42:12811–12816

    CAS  Article  Google Scholar 

  32. 32.

    Akrami S, Karami B, Farahi M (2017) Preparation and characterization of novel phthalhydrazide-functionalized MCM-41 and its application in the one-pot synthesis of coumarin-fused triazolopyrimidines. RSC Adv 7:34315–34320

    CAS  Article  Google Scholar 

  33. 33.

    Eskandari Kh, Karami B, Farahi M, Mouzari V (2016) Silica sodium carbonate catalyzed in water synthesis of novel benzylbarbiturocoumarin derivatives. Tetrahedron Lett 57:487–491

    CAS  Article  Google Scholar 

  34. 34.

    Farahi M, Karami B, Mohamadi Tanuraghaj H (2015) Efficient synthesis of a new class of sulfonamide-substituted coumarins. Tetrahedron Lett 56:1833–1836

    CAS  Article  Google Scholar 

  35. 35.

    Karami B, Farahi M, Farmani N, Mohamadi Tanuraghaj H (2016) Novel synthesis of coumarin-containing secondary benzamide derivatives using tungstate sulfuric acid. New J Chem 40:1715–1719

    CAS  Article  Google Scholar 

  36. 36.

    Farahi M, Tamaddon F, Karami B, Pasdar S (2015) Highly efficient syntheses of α-amino ketones and pentasubstituted pyrroles using reusable heterogeneous catalysts. Tetrahedron Lett 56:1887–1890

    CAS  Article  Google Scholar 

  37. 37.

    Neochoritis CG, Zarganes-Tzitzikas T, Stephanidou-Stephanatou J (2014) Dimethyl acetylenedicarboxylate: a versatile tool in organic synthesis. Synthesis 46:537–585

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge partial support of this work by Yasouj University, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bahador Karami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 774 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akrami, S., Karami, B. & Farahi, M. A novel protocol for catalyst-free synthesis of fused six-member rings to triazole and pyrazole. Mol Divers 24, 225–231 (2020). https://doi.org/10.1007/s11030-019-09944-5

Download citation

Keywords

  • Pyrazolo[15-a]pyrimidine
  • Triazolo[1,5-a]pyrimidine
  • Triazolo[5,1-b][1,3] thiazine
  • Dialkyl acetylenedicarboxylates
  • 3-Amino-1H-1,2,4-triazole
  • 3-Amino-1H-pyrazole-4-carbonitrile