A novel protocol for catalyst-free synthesis of fused six-member rings to triazole and pyrazole

  • Sedigheh Akrami
  • Bahador KaramiEmail author
  • Mahnaz Farahi
Original Article


Herein, an effectual, quick and novel method is described for the synthesis of new triazolo[1,5-a]pyrimidine, triazolo[5,1-b][1,3] thiazine and pyrazolo[1,5-a]pyrimidine derivatives. This series of fused six-member rings to triazole and pyrazole was prepared via the catalyst-free reaction of dialkyl acetylenedicarboxylates and 3-substituted 1H-1,2,4-triazole or 3-amino-1H-pyrazole-4-carbonitrile. The structures of the prepared products were deduced from their Fourier-transform infrared, elemental analysis and proton and carbon-13 nuclear magnetic resonance spectral data.

Graphical abstract

A novel and green method is described for the synthesis of new triazolo[1,5-a]pyrimidine, triazolo[5,1-b][1,3] thiazine and pyrazolo[1,5-a]pyrimidine derivatives.


Pyrazolo[15-a]pyrimidine Triazolo[1,5-a]pyrimidine Triazolo[5,1-b][1,3] thiazine Dialkyl acetylenedicarboxylates 3-Amino-1H-1,2,4-triazole 3-Amino-1H-pyrazole-4-carbonitrile 



The authors gratefully acknowledge partial support of this work by Yasouj University, Iran.

Supplementary material

11030_2019_9944_MOESM1_ESM.pdf (774 kb)
Supplementary material 1 (PDF 774 kb)


  1. 1.
    Jin Z (2013) Muscarine, imidaozle, oxazole and thiazole alkaloids. Nat Prod Rep 30:869–915CrossRefGoogle Scholar
  2. 2.
    Asif M (2014) A mini review on antimalarial activities of biologically active substituted triazole derivatives. Int J Adv Res Chem Sci 1:22–28Google Scholar
  3. 3.
    Galloway WRJD, Isidro-Llobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 1:80–93CrossRefGoogle Scholar
  4. 4.
    Sagar R, Moon-Ju K, Park SB (2008) Ultrasound-promoted one-Pot, three component synthesis of novel 5-amino-2-(4-chlorophenyl)-7-substituted phenyl-8,8a-dihydro-7H-[1,3,4]thiadiazolo[3,2-A]pyrimidine-6-carbonitrile derivatives. Tetrahedron Lett 49:5080–5083CrossRefGoogle Scholar
  5. 5.
    Abdel-Rahman AH, Keshk EM, Hanna MA et al (2004) Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg Med Chem 12:2483–2488CrossRefGoogle Scholar
  6. 6.
    Rai US, Isloor AM, Shetty P et al (2010) Novel chromeno [2,3-b]-pyrimidine derivatives as potential anti-microbial agents. Eur J Med Chem 45:2695–2699CrossRefGoogle Scholar
  7. 7.
    Saito T, Obitsu T, Minamoto C et al (2011) Pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF1) receptor antagonists. Bioorg Med Chem 19:5955–5966CrossRefGoogle Scholar
  8. 8.
    Yu W, Goddard C, Clearfield E et al (2011) Design, synthesis, and biological evaluation of triazolo-pyrimidine derivatives as novel inhibitors of hepatitis B virus surface antigen (HBsAg). Secret J Med Chem 54:5660–5670CrossRefGoogle Scholar
  9. 9.
    Shaabani A, Seyyedhamzeh M, Ganji N, Hamidzad Sangachin M, Armaghan M (2015) One-pot four-component synthesis of highly substituted [1,2,4]triazolo[1,5-a]pyrimidines. Mol Divers 19(4):709–715CrossRefGoogle Scholar
  10. 10.
    Salameh S, Abul-Haj M, Quirós M, Salas JM (2005) 1,2,4-triazolo[4,3-a]pyrimidines: a new kind of ligands. Structure of the silver(I) dimer with the 7-oxo derivative. Inorg Chim Acta 358:824–827CrossRefGoogle Scholar
  11. 11.
    Boutaleb-Charki S, Marín C, Maldonado CR, Rosales MJ, Urbano J, Guitierrez-Sánchez R (2009) Copper(II) complexes of [1,2,4]triazolo [1,5-a]pyrimidine derivatives as potential anti-parasitic agents. Drug Metab Lett 3:35–44CrossRefGoogle Scholar
  12. 12.
    Ruisi G, Canfora L, Bruno G, Rotondo A, Mastropietro TF, Debbia EA (2010) Triorganotin(IV) derivatives of 7-amino-2-(methylthio)[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid. Synthesis, spectroscopic characterization, in vitro antimicrobial activity and X-ray crystallography. J Organomet Chem 695:546–551CrossRefGoogle Scholar
  13. 13.
    El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157CrossRefGoogle Scholar
  14. 14.
    Fizer M, Slivka I (2016) Synthesis of [1,2,4]triazolo[1,5-a]pyrimidine (microreview). Chem Heterocycl Compd 52(3):155–157CrossRefGoogle Scholar
  15. 15.
    Saito T, Obitsu T, Minamoto C, Sugiura T, Matsumura N, Ueno S, Kishi A (2011) Pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF1) receptor antagonists. Bioorg Med Chem 19:5955–5966CrossRefGoogle Scholar
  16. 16.
    Velders AH, Bergamo A, Alessio E, Zangrando E, Haasnoot JG, Casarsa C, Cocchietto M (2004) Synthesis and chemical–pharmacological characterization of the antimetastatic NAMI-A-type Ru(III) complexes (Hdmtp)[trans-RuCl4(dmso-S)(dmtp)], (Na)[trans-RuCl4(dmso-S)(dmtp)], and [mer-RuCl3(H2O)(dmso-S)(dmtp)] (dmtp = 5,7-Dimethyl[1,2,4]triazolo[1,5-a]pyrimidine). J Med Chem 47:1110–1121CrossRefGoogle Scholar
  17. 17.
    Popik P, Kostakis E, Krawczyk M, Nowak G, Szewczyk P, Krieter Z, Chen SJ, Russek TT (2006) The anxioselective agent 7-(2-Chloropyridin-4-yl)pyrazolo-[1,5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-Gated currents at α1 subunit-containing GABAA receptors. J Pharmacol Exp Ther 319:1244–1252CrossRefGoogle Scholar
  18. 18.
    Raj KKV, Narayan BV, Ashalatha N, Suchita K (2006) New thiazoles containing pyrazolopyrimidine moiety as possible analgesic agents. J Pharmacol Toxicol 1:559–565CrossRefGoogle Scholar
  19. 19.
    Almansa C, Merlos M, Rafanell JGA, Arriba F, Cavalcanti FL, Gomez LA, Miralles A (2001) Synthesis and SAR of a new series of COX-2-Selective inhibitors: pyrazolo[1,5-a]pyrimidines. J Med Chem 44:350–361CrossRefGoogle Scholar
  20. 20.
    Kim DC, Lee YR, Yang B, Shin KJ, Kim DJ, Chung BY, Yoo KH (2003) Synthesis and biological evaluations of pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 inhibitors. Eur J Med Chem 38:525–532CrossRefGoogle Scholar
  21. 21.
    Xu Y, Brenning BG, Kultgen SG, Foulks JM, Clifford A, Lai Sh (2015) Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective pim-1 inhibitors. ACS Med Chem Lett 6(1):63–67CrossRefGoogle Scholar
  22. 22.
    Cervantes-Gomez F, Chen LS, Orlowski RZ, Gandhi V (2013) Biological effects of the Pim kinase inhibitor, SGI-1776, in multiple myeloma. Clin Lymphoma Myeloma Leuk 13:317–329CrossRefGoogle Scholar
  23. 23.
    Wang H, Lee M, Peng Zh, Blázquez B, Lastochkin E, Kumarasiri M, Bouley R (2015) Synthesis and evaluation of 1,2,4-Triazolo[1,5-a]pyrimidines as antibacterial agents against enterococcus faecium. J Med Chem 58:4194–4203CrossRefGoogle Scholar
  24. 24.
    Gavrin LK, Lee A, Provencher BA (2007) Synthesis of pyrazolo[1,5-α]pyrimidinone regioisomers. J Org Chem 72:1043–1046CrossRefGoogle Scholar
  25. 25.
    Dalinger IL, Vatsadse IA, Shevelev SA (2005) Liquid-phase synthesis of combinatorial libraries based on 7-trifluoromethyl-substituted pyrazolo[1,5-a]pyrimidine scaffold. J Comb Chem 7:236–245CrossRefGoogle Scholar
  26. 26.
    Kryl’skii DV, Chuvashlev AS, Arzamastsev AP, Slivkin AI (2009) Synthesis of new pyrazolo[1,5-a]pyrimidines. Pharm Chem J 43:294–296CrossRefGoogle Scholar
  27. 27.
    Verma GK, Raghuvanshi K, Verma RK, Dwivedi P, Singh MS (2011) An efficient one-pot solvent-free synthesis and photophysical properties of 9-aryl/alkyl-octahydroxanthene-1,8-diones. Tetrahedron 67(20):3698–3704CrossRefGoogle Scholar
  28. 28.
    Duarte RCC, Ribeiro MTC, Machado AASC (2017) Reaction scale and green chemistry: Microscale or macroscale, which is greener? J Chem Educ 94(9):1255–1264CrossRefGoogle Scholar
  29. 29.
    Karami B, Farahi M, Banaki Z (2015) A new protocol for catalyst-free regioselective synthesis of 5,9-dihydropyrimido[5,4-e][1,2,4]triazolo[1,5-a]pyrimidine-6,8(4H,7H)-diones. Synlett 26(06):741–744CrossRefGoogle Scholar
  30. 30.
    Karami B, Farahi M, Banaki Z (2015) A novel one-pot method for highly regioselective synthesis of triazoloapyrimidinedicarboxylates using silica sodium carbonate. Synlett 26(13):1804–1807CrossRefGoogle Scholar
  31. 31.
    Karami B, Farahi M, Akrami S, Elhamifar D (2018) Tungstic acid-functionalized MCM-41 as a novel mesoporous solid acid catalyst for the one-pot synthesis of new pyrrolo[2,1-a]isoquinolines. New J Chem 42:12811–12816CrossRefGoogle Scholar
  32. 32.
    Akrami S, Karami B, Farahi M (2017) Preparation and characterization of novel phthalhydrazide-functionalized MCM-41 and its application in the one-pot synthesis of coumarin-fused triazolopyrimidines. RSC Adv 7:34315–34320CrossRefGoogle Scholar
  33. 33.
    Eskandari Kh, Karami B, Farahi M, Mouzari V (2016) Silica sodium carbonate catalyzed in water synthesis of novel benzylbarbiturocoumarin derivatives. Tetrahedron Lett 57:487–491CrossRefGoogle Scholar
  34. 34.
    Farahi M, Karami B, Mohamadi Tanuraghaj H (2015) Efficient synthesis of a new class of sulfonamide-substituted coumarins. Tetrahedron Lett 56:1833–1836CrossRefGoogle Scholar
  35. 35.
    Karami B, Farahi M, Farmani N, Mohamadi Tanuraghaj H (2016) Novel synthesis of coumarin-containing secondary benzamide derivatives using tungstate sulfuric acid. New J Chem 40:1715–1719CrossRefGoogle Scholar
  36. 36.
    Farahi M, Tamaddon F, Karami B, Pasdar S (2015) Highly efficient syntheses of α-amino ketones and pentasubstituted pyrroles using reusable heterogeneous catalysts. Tetrahedron Lett 56:1887–1890CrossRefGoogle Scholar
  37. 37.
    Neochoritis CG, Zarganes-Tzitzikas T, Stephanidou-Stephanatou J (2014) Dimethyl acetylenedicarboxylate: a versatile tool in organic synthesis. Synthesis 46:537–585CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sedigheh Akrami
    • 1
  • Bahador Karami
    • 1
    Email author
  • Mahnaz Farahi
    • 1
  1. 1.Department of ChemistryYasouj UniversityYasujIran

Personalised recommendations