Skip to main content

Advertisement

Log in

Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Inhibition of butyrylcholinesterase (BChE) might be a useful therapeutic target for Alzheimer’s disease (AD). A new series of 1,2,3,4-tetrahydro-9H-carbazole derivatives were designed synthesized and evaluated as BChE inhibitors. While all of the derivatives have shown for AChE IC50 values below the detectable limit (> 100 µM), they were selective potent BChE inhibitors. 1-(2-(6-fluoro-1,2,3,4-tetrahydro-9H-carbazole-9-yl)ethyl)piperidin-1-ium chloride (15 g) had the most potent anti-BChE activity (IC50 value = 0.11 μM), the highest BChE selectivity and mixed-type inhibition. Pharmacokinetic properties were accordant to Lipinski rule and compound 15g demonstrated neuroprotective and inhibition of β-secretase (BACE1) activities. Furthermore, in vivo study of compound 15g in Morris water maze task has confirmed memory improvement in scopolamine-induced impairment. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD.

Graphical abstract

A new series of 1,2,3,4-tetrahydro-9H-carbazole derivatives were designed synthesized and evaluated as BChE inhibitors. While all of the derivatives have shown for AChE IC50 values below the detectable limit, they were selective potent BChE inhibitors. Compound 15g had the most potent anti-BChE activity. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Sawatzky E, Wehle S, Kling B, Wendrich J, Bringmann G, Sotriffer CA, Jr Heilmann, Decker M (2016) Discovery of highly selective and nanomolar carbamate-based butyrylcholinesterase inhibitors by rational investigation into their inhibition mode. J Med Chem 59(5):2067–2082

    Article  CAS  Google Scholar 

  2. Jones M, Wang J, Harmon S, Kling B, Heilmann J, Gilmer JF (2016) Novel selective butyrylcholinesterase inhibitors incorporating antioxidant functionalities as potential bimodal therapeutics for Alzheimer’s disease. Molecules 21(4):440

    Article  Google Scholar 

  3. Dighe SN, Deora GS, De la Mora E, Nachon F, Chan S, Parat M-O, Brazzolotto X, Ross BP (2016) Discovery and structure-activity relationships of a highly selective butyrylcholinesterase inhibitor by structure-based virtual screening. J Med Chem 59(16):7683–7689

    Article  CAS  Google Scholar 

  4. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147

    Article  CAS  Google Scholar 

  5. Turkan F, Cetin A, Taslimi P, Karaman M, Gulcin I (2019) Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem 86:420–427

    Article  CAS  Google Scholar 

  6. Burmaoglu S, Yilmazb AO, Polat MF, Kaya R, Gulcin I, Algul O (2019) Synthesis and biological evaluation of novel tris-chalcones as potentcarbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg Chem 85:191–197

    Article  CAS  Google Scholar 

  7. BayrakC TaslimiP, Karaman HS, Gulcin I, Menzek A (2019) The first synthesis, carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorg Chem 85:128–139

    Article  Google Scholar 

  8. Aktas A, Celepci DB, Kaya R, Taslimi P, Gok Y, Aygun M, Gulcin I (2019) Novel morpholine liganded Pd-based N-heterocyclic carbene complexes: synthesis, characterization, crystal structure, antidiabetic and anticholinergic properties. Polyhedron 159:345–354

    Article  CAS  Google Scholar 

  9. Ozgun DO, Gul HI, Yamali C, Sakagami H, Gulcin I, Sukuroglu M, Supura GT (2019) Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg Chem 84(511):517

    Google Scholar 

  10. Thiratmatrakul S, Yenjai C, Waiwut P, Vajragupta O, Reubroycharoen P, Tohda M, Boonyarat C (2014) Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 75:21–30

    Article  CAS  Google Scholar 

  11. Akrami H, Mirjalili BF, Khoobi M, Moradi A, Nadri H, Emami S, Foroumadi A, Vosooghi M, Shafiee A (2015) 9H-Carbazole derivatives containing the N-benzyl-1, 2, 3-triazole moiety as new acetylcholinesterase inhibitors. Arch Pharm 348(5):366–374

    Article  CAS  Google Scholar 

  12. Arab S, Sadat-Ebrahimi SE, Mohammadi-Khanaposhtani M, Moradi A, Nadri H, Mahdavi M, Moghimi S, Asadi M, Firoozpour L, Pirali-Hamedani M (2015) Synthesis and evaluation of chroman-4-one linked to N-benzyl pyridinium derivatives as new acetylcholinesterase inhibitors. Arch Pharm 348(9):643–649

    Article  CAS  Google Scholar 

  13. Mostofi M, Ziarani GM, Mahdavi M, Moradi A, Nadri H, Emami S, Alinezhad H, Foroumadi A, Shafiee A (2015) Synthesis and structure-activity relationship study of benzofuran-based chalconoids bearing benzylpyridinium moiety as potent acetylcholinesterase inhibitors. Eur J Med Chem 103:361–369

    Article  CAS  Google Scholar 

  14. Mohammadi-Khanaposhtani M, Saeedi M, Zafarghandi NS, Mahdavi M, Sabourian R, Razkenari EK, Alinezhad H, Khanavi M, Foroumadi A, Shafiee A (2015) Potent acetylcholinesterase inhibitors: design, synthesis, biological evaluation, and docking study of acridone linked to 1, 2, 3-triazole derivatives. Eur J Med Chem 92:799–806

    Article  CAS  Google Scholar 

  15. Perry EK, Perry R, Blessed G, Tomlinson B (1978) Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 4(4):273–277

    Article  CAS  Google Scholar 

  16. Yeun GH, Lee SH, Lim YB, Lee HS, Won M-H, Lee BH, Park JH (2013) Synthesis of selective butyrylcholinesterase inhibitors coupled between α-lipoic acid and polyphenols by using 2-(piperazin-1-yl) ethanol linker. Bull Korean Chem Soc 34(4):1025–1029

    Article  CAS  Google Scholar 

  17. Brus B, Kosak U, Turk S, Pislar A, Coquelle N, Kos J, Stojan J, Colletier J-P, Gobec S (2014) Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J Med Chem 57(19):8167–8179

    Article  CAS  Google Scholar 

  18. Huang G, Kling B, Darras FH, Heilmann J, Decker M (2014) Identification of a neuroprotective and selective butyrylcholinesterase inhibitor derived from the natural alkaloid evodiamine. Eur J Med Chem 81:15–21

    Article  CAS  Google Scholar 

  19. Chen X, Tikhonova IG, Decker M (2011) Probing the mid-gorge of cholinesterases with spacer-modified bivalent quinazolinimines leads to highly potent and selective butyrylcholinesterase inhibitors. Bioorg Med Chem 19(3):1222–1235

    Article  CAS  Google Scholar 

  20. Carolan CG, Dillon GP, Khan D, Ryder SA, Gaynor JM, Reidy S, Marquez JF, Jones M, Holland V, Gilmer JF (2010) Isosorbide-2-benzyl carbamate-5-salicylate, a peripheral anionic site binding subnanomolar selective butyrylcholinesterase inhibitor. J Med Chem 53(3):1190–1199

    Article  CAS  Google Scholar 

  21. Rizzo S, Cl Rivière, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Morroni F, Tarozzi A, Monti J-P (2008) Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, β amyloid aggregation, and Aβ neurotoxicity. J Med Chem 51(10):2883–2886

    Article  CAS  Google Scholar 

  22. Kamal MA, Qu X, Q-s Yu, Tweedie D, Holloway HW, Li Y, Tan Y, Greig NH (2008) Tetrahydrofurobenzofuran cymserine, a potent butyrylcholinesterase inhibitor and experimental Alzheimer drug candidate, enzyme kinetic analysis. J Neural Transm 115(6):889–898

    Article  CAS  Google Scholar 

  23. Karlsson D, Fallarero A, Brunhofer G, Guzik P, Prinz M, Holzgrabe U, Erker T, Vuorela P (2012) Identification and characterization of diarylimidazoles as hybrid inhibitors of butyrylcholinesterase and amyloid beta fibril formation. Eur J Pharm Sci 45(1):169–183

    Article  CAS  Google Scholar 

  24. Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu Q-S, Mamczarz J, Holloway HW, Giordano T (2005) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA 102(47):17213–17218

    Article  CAS  Google Scholar 

  25. Takahashi J, Hijikuro I, Kihara T, Murugesh MG, Fuse S, Kunimoto R, Tsumura Y, Akaike A, Niidome T, Okuno Y (2010) Design, synthesis, evaluation and QSAR analysis of N1-substituted norcymserine derivatives as selective butyrylcholinesterase inhibitors. Bioorg Med Chem Lett 20(5):1718–1720

    Article  CAS  Google Scholar 

  26. Q-s Yu, Holloway HW, Utsuki T, Brossi A, Greig NH (1999) Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for Alzheimer’s disease. J Med Chem 42(10):1855–1861

    Article  Google Scholar 

  27. Otto R, Penzis R, Gaube F, Winckler T, Appenroth D, Fleck C, Tränkle C, Lehmann J, Enzensperger C (2014) Beta and gamma carboline derivatives as potential anti-Alzheimer agents: a comparison. Eur J Med Chem 87:63–70

    Article  CAS  Google Scholar 

  28. Ghobadian R, Nadri H, Moradi A, Bukhari SNA, Mahdavi M, Asadi M, Akbarzadeh T, Khaleghzadeh-Ahangar H, Sharifzadeh M, Amini M (2018) Design, synthesis, and biological evaluation of selective and potent carbazole-based butyrylcholinesterase inhibitors. Bioorg Med Chem 26(17):4952–4962

    Article  CAS  Google Scholar 

  29. Ghobadian R, Mahdavi M, Nadri H, Moradi A, Edraki N, Akbarzadeh T, Sharifzadeh M, Bukhari SNA, Amini M (2018) Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities. Eur J Med Chem 155:49–60

    Article  CAS  Google Scholar 

  30. Baharloo F, Moslemin MH, Nadri H, Asadipour A, Mahdavi M, Emami S, Firoozpour L, Mohebat R, Shafiee A, Foroumadi A (2015) Benzofuran-derived benzylpyridinium bromides as potent acetylcholinesterase inhibitors. Eur J Med Chem 93:196–201

    Article  CAS  Google Scholar 

  31. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Article  CAS  Google Scholar 

  32. Najafi Z, Mahdavi M, Saeedi M, Karimpour-Razkenari E, Asatouri R, Vafadarnejad F, Moghadam FH, Khanavi M, Sharifzadeh M, Akbarzadeh T (2017) Novel tacrine-1, 2, 3-triazole hybrids: in vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 125:1200–1212

    Article  CAS  Google Scholar 

  33. Rogers CU, Corson BB (1950) 1, 2, 3, 4-Tetrahydrocarbazole. Org Synth 63:90

    Google Scholar 

  34. Saturnino C, Palladino C, Napoli M, Sinicropi MS, Botta A, Sala M, de Prati AC, Novellino E, Suzuki H (2013) Synthesis and biological evaluation of new N-alkylcarbazole derivatives as STAT3 inhibitors: preliminary study. Eur J Med Chem 60:112–119

    Article  CAS  Google Scholar 

  35. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    Article  CAS  Google Scholar 

  36. Saeedi M, Golipoor M, Mahdavi M, Moradi A, Nadri H, Emami S, Foroumadi A, Shafiee A (2016) Phthalimide-derived N-benzylpyridinium halides targeting cholinesterases: synthesis and bioactivity of new potential anti-Alzheimer’s disease agents. Arch Pharm 349(4):293–301

    Article  CAS  Google Scholar 

  37. Khoobi M, Alipour M, Sakhteman A, Nadri H, Moradi A, Ghandi M, Emami S, Foroumadi A, Shafiee A (2013) Design, synthesis, biological evaluation and docking study of 5-oxo-4, 5-dihydropyrano [3, 2-c] chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur J Med Chem 68:260–269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the equipment supports from Department of Medicinal Chemistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, and Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. This work was supported by Grants (9211302001) from the Research Council of Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Amini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobadian, R., Esfandyari, R., Nadri, H. et al. Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors. Mol Divers 24, 211–223 (2020). https://doi.org/10.1007/s11030-019-09943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09943-6

Keywords

Navigation