Skip to main content
Log in

Combining ligand- and structure-based in silico methods for the identification of natural product-based inhibitors of Akt1

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The traditional method of drug discovery process has been surpassed by a rational approach where computer-aided drug designing plays a vital role in the identification of leads from large compound databases. Further, natural products have an important role in drug discovery as these have been the source of most active ingredients of medicines. Herein, in silico structure- and ligand-based approaches have been applied to screen in-house IIIM natural product repository for Akt1 (serine/threonine protein kinases) which is a well-known therapeutic target for cancer due to its overexpression and preventing the cells from undergoing apoptosis. Combined ligand-based and structure-based strategies were applied on to the existing library comprising of about 700 pure natural products, and the compounds identified from screening were biologically evaluated for Akt1 inhibition using Akt1 kinase activity assay. Fourteen promising compounds showed significant inhibition at 500 nM through in vitro screening, and from them, eight were new for Akt1 inhibition. Through the MD studies of Akt1 with the most active compound IN00145, it was inferred that Lys179, Glu191, Glu228, Ala230, Glu234 and Asp292 are the important amino acid residues which provide stability to the Akt1-IN00145 complex. Lead optimization studies were also performed around the actives to design better and selective inhibitors for Akt1. The results emphasized the successful application of virtual screening to identify new Akt1 inhibitor scaffolds that can be developed into a drug candidate in drug discovery programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86. https://doi.org/10.1016/S0065-230X(05)94002-5

    Article  CAS  PubMed  Google Scholar 

  2. Barnett SF, Bilodeau MT, Lindsley CW (2005) The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr Top Med Chem 5(2):109–125. https://doi.org/10.2174/1568026053507714

    Article  CAS  PubMed  Google Scholar 

  3. Kumar CC, Madison V (2005) AKT crystal structure and AKT-specific inhibitors. Oncogene 24(50):7493–7501. https://doi.org/10.1038/sj.onc.1209087

    Article  CAS  PubMed  Google Scholar 

  4. Dumble M, Crouthamel MC, Zhang SY, Schaber M, Levy D, Robell K, Liu Q, Figueroa DJ, Minthorn EA, Seefeld MA, Rouse MB, Rabindran SK, Heerding DA, Kumar R (2014) Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS ONE 9(6):e100880. https://doi.org/10.1371/journal.pone.0100880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bockmann S, Nebe B (2003) The In vitro effects of H-89, a specific inhibitor of protein kinase A, in the human colonic carcinoma cell line caco-2. Eur J Cancer Prev 12(6):469–478

    Article  CAS  PubMed  Google Scholar 

  6. Breitenlechner CB, Wegge T, Berillon L, Graul K, Marzenell K, Friebe WG, Thomas U, Schumacher R, Huber R, Engh RA, Masjost B (2004) Structure-based optimization of novel azepane derivatives as PKB inhibitors. J Med Chem 47(6):1375–1390. https://doi.org/10.1021/jm0310479

    Article  CAS  PubMed  Google Scholar 

  7. Heerding DA, Rhodes N, Leber JD, Clark TJ, Keenan RM, Lafrance LV, Li M, Safonov IG, Takata DT, Venslavsky JW, Yamashita DS, Choudhry AE, Copeland RA, Lai Z, Schaber MD, Tummino PJ, Strum SL, Wood ER, Duckett DR, Eberwein D, Knick VB, Lansing TJ, McConnell RT, Zhang S, Minthorn EA, Concha NO, Warren GL, Kumar R (2008) Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), A Novel Inhibitor of AKT Kinase. J Med Chem 51(18):5663–5679. https://doi.org/10.1021/jm8004527

    Article  CAS  PubMed  Google Scholar 

  8. Blake JF, Kallan NC, Xiao D, Xu R, Bencsik JR, Skelton NJ, Spencer KL, Mitchell IS, Woessner RD, Gloor SL, Risom T, Gross SD, Martinson M, Morales TH, Vigers GP, Brandhuber BJ (2010) Discovery of pyrrolopyrimidine inhibitors of Akt. Bioorg Med Chem Lett 20(19):5607–5612. https://doi.org/10.1016/j.bmcl.2010.08.053

    Article  CAS  PubMed  Google Scholar 

  9. Luo Y, Shoemaker AR, Liu X, Woods KW, Thomas SA, de Jong R, Han EK, Li T, Stoll VS, Powlas JA, Oleksijew A, Mitten MJ, Shi Y, Guan R, McGonigal TP, Klinghofer V, Johnson EF, Leverson JD, Bouska JJ, Mamo M, Smith RA, Gramling-Evans EE, Zinker BA, Mika AK, Nguyen PT, Oltersdorf T, Rosenberg SH, Li Q, Giranda VL (2005) Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol Cancer Ther 4(6):977–986

    Article  CAS  PubMed  Google Scholar 

  10. Saxty G, Woodhead SJ, Berdini V, Davies TG, Verdonk ML, Wyatt PG, Boyle RG, Barford D, Downham R, Garrett MD, Carr RA (2007) Identification of inhibitors of protein kinase B using fragment-based lead discovery. J Med Chem 50(10):2293–2296. https://doi.org/10.1021/jm070091b

    Article  CAS  PubMed  Google Scholar 

  11. Yap TA, Walton MI, Grimshaw KM, Te Poele RH, Eve PD, Valenti MR, de Haven Brandon AK, Martins V, Zetterlund A, Heaton SP, Heinzmann K, Jones PS, Feltell RE, Reule M, Woodhead SJ, Davies TG, Lyons JF, Raynaud FI, Eccles SA, Workman P, Thompson NT, Garrett MD (2012) AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity. Clin Cancer Res 18(14):3912–3923. https://doi.org/10.1158/1078-0432.CCR-11-3313

    Article  CAS  PubMed  Google Scholar 

  12. Spencer A, Yoon SS, Harrison SJ, Morris SR, Smith DA, Brigandi RA, Gauvin J, Kumar R, Opalinska JB, Chen C (2014) The novel AKT inhibitor Afuresertib shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma. Blood 124(14):2190–2195. https://doi.org/10.1182/blood-2014-03-559963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dumble M, Crouthamel MC, Zhang SY, Schaber M, Levy D, Robell K, Liu Q, Figueroa DJ, Minthorn EA, Seefeld MA, Rouse MB, Rabindran SK, Heerding DA, Kumar R (2014) Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS ONE 9(6):e100880. https://doi.org/10.1371/journal.pone.0100880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamoureux F, Zoubeidi A (2013) Dual inhibition of autophagy and the AKT pathway in prostate cancer. Autophagy 9(7):1119–1120. https://doi.org/10.4161/auto.24921

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dev S (1999) Ancient-modern concordance in ayurvedic plants: some examples health perspect. Environ Health Perspect 107:783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kingston DG (2011) Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 74(3):496–511. https://doi.org/10.1021/np100550t

    Article  CAS  PubMed  Google Scholar 

  17. Chin YW, Balunas MJ, Chai HB, Kinghorn A (2006) Drug Discovery from Natural Sources. AAPS J 8:239–253

    Article  Google Scholar 

  18. Schror K (2008) Acetylsalicylic acid. Wiley-VCH, Weinheim, pp 5–24

    Book  Google Scholar 

  19. Gu J, Gui Y, Chen L, Yuan G, Lu HZ, Xu X (2013) Use of natural products as chemical library for drug discovery and network pharmacology. PLoS ONE 8(4):e62839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiao XB, Hou TJ, Zhang W, Guo SL, Xu XJ (2002) A 3D structure database of components from Chinese traditional medicinal herbs. J Chem Inf Comput Sci 42:481–489

    Article  CAS  PubMed  Google Scholar 

  21. Dictionary of Natural Product. http://dnp.chemnetbase.com. Accessed Dec 2018

  22. Mangal M, Sagar P, Singh H, Raghava GP, Agarwal SM (2012) NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res 41(Database issue):D1124–D1129

    PubMed  PubMed Central  Google Scholar 

  23. Kubinyi H (1998) Structure-based design of enzyme inhibitors and receptor ligands. Curr Opin Drug Discov Devel 1(1):4–15

    CAS  PubMed  Google Scholar 

  24. Al-Sha’er MA, Iman M, Inas A, Nancy H (2015) Evaluation of novel Akt1 inhibitors as anticancer agents using virtual co-crystallized pharmacophore generation. J Mol Graph Model 62:213–225

    Article  PubMed  Google Scholar 

  25. Lippa B, Pan G, Corbett M, Li C, Kauffman GS, Pandit J, Robinson S, Wei L, Kozina E, Marr ES, Borzillo G, Knauth E, Barbacci-Tobin EG, Vincent P, Troutman M, Baker D, Rajamohan F, Kakar S, Clark T, Morris J (2008) Synthesis and structure based optimization of novel Akt inhibitors. Bioorg Med Chem Lett 18(11):3359–3363. https://doi.org/10.1016/j.bmcl.2008.04.034

    Article  CAS  PubMed  Google Scholar 

  26. Freeman-Cook KD, Autry C, Borzillo G, Gordon D, Barbacci-Tobin E, Bernardo V, Briere D, Clark T, Corbett M, Jakubczak J, Kakar S, Knauth E, Lippa B, Luzzio MJ, Mansour M, Martinelli G, Marx M, Nelson K, Pandit J, Rajamohan F, Robinson S, Subramanyam C, Wei L, Wythes M, Morris J (2010) Design of selective, ATP-competitive inhibitors of Akt. J Med Chem 53(12):4615–4622. https://doi.org/10.1021/jm1003842

    Article  CAS  PubMed  Google Scholar 

  27. Bencsik JR, Xiao D, Blake JF, Kallan NC, Mitchell IS, Spencer KL, Xu R, Gloor SL, Martinson M, Risom T, Woessner RD, Dizon F, Wu WI, Vigers GP, Brandhuber BJ, Skelton NJ, Prior WW, Murray LJ (2010) Discovery of dihydrothieno- and dihydrofuropyrimidines as potent pan Akt inhibitors. Bioorg Med Chem Lett 20(23):7037–7041. https://doi.org/10.1016/j.bmcl.2010.09.112

    Article  CAS  PubMed  Google Scholar 

  28. Kallan NC, Spencer KL, Blake JF, Xu R, Heizer J, Bencsik JR, Mitchell IS, Gloor SL, Martinson M, Risom T, Gross SD, Morales TH, Wu WI, Vigers GP, Brandhuber BJ, Skelton NJ (2011) Discovery and SAR of spirochromane Akt inhibitors. Bioorg Med Chem Lett 21(8):2410–2414. https://doi.org/10.1016/j.bmcl.2011.02.073

    Article  CAS  PubMed  Google Scholar 

  29. Xu R, Banka A, Blake JF, Mitchell IS, Wallace EM, Bencsik JR, Kallan NC, Spencer KL, Gloor SL, Martinson M, Risom T, Gross SD, Morales TH, Wu WI, Vigers GP, Brandhuber BJ, Skelton NJ (2011) Discovery of spirocyclic sulfonamides as potent Akt inhibitors with exquisite selectivity against PKA. Bioorg Med Chem Lett 21(8):2335–2340. https://doi.org/10.1016/j.bmcl.2011.02.098

    Article  CAS  PubMed  Google Scholar 

  30. Lin K, Lin J, Wu WI, Ballard J, Lee BB, Gloor SL, Vigers GP, Morales TH, Friedman LS, Skelton N, Brandhuber BJ (2012) An ATP-site on-off switch that restricts phosphatase accessibility of Akt. Sci Signal 5(223):ra37. https://doi.org/10.1126/scisignal.2002618

    Article  PubMed  Google Scholar 

  31. Addie M, Ballard P, Buttar D, Crafter C, Currie G, Davies BR, Debreczeni J, Dry H, Dudley P, Greenwood R, Johnson PD, Kettle JG, Lane C, Lamont G, Leach A, Luke RW, Morris J, Ogilvie D, Page K, Pass M, Pearson S, Ruston L (2013) Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J Med Chem 56(5):2059–2073. https://doi.org/10.1021/jm301762v

    Article  CAS  PubMed  Google Scholar 

  32. Lin H, Yamashita DS, Zeng J, Xie R, Verma S, Luengo JI, Rhodes N, Zhang S, Robell KA, Choudhry AE, Lai Z, Kumar R, Minthorn EA, Brown KK, Heerding DA (2010) 2,3,5-Trisubstituted pyridines as selective AKT inhibitors. Part II: Improved drug-like properties and kinase selectivity from azaindazoles. Bioorg Med Chem Lett 20(2):679–683. https://doi.org/10.1016/j.bmcl.2009.11.060

    Article  CAS  PubMed  Google Scholar 

  33. Lin H, Yamashita DS, Zeng J, Xie R, Wang W, Nidarmarthy S, Luengo JI, Rhodes N, Knick VB, Choudhry AE, Lai Z, Minthorn EA, Strum SL, Wood ER, Elkins PA, Concha NO, Heerding DA (2010) 2,3,5-Trisubstituted pyridines as selective AKT inhibitors—Part I: Substitution at 2-position of the core pyridine for ROCK1 selectivity. Bioorg Med Chem Lett 20(2):673–678. https://doi.org/10.1016/j.bmcl.2009.11.064

    Article  CAS  PubMed  Google Scholar 

  34. Seefeld MA, Rouse MB, McNulty KC, Sun L, Wang J, Yamashita DS, Luengo JI, Zhang S, Minthorn EA, Concha NO, Heerding DA (2009) Discovery of 5-pyrrolopyridinyl-2-thiophenecarboxamides as potent AKT kinase inhibitors. Bioorg Med Chem Lett 19(8):2244–2248. https://doi.org/10.1016/j.bmcl.2009.02.094

    Article  CAS  PubMed  Google Scholar 

  35. Zhu GD, Gong J, Claiborne A, Woods KW, Gandhi VB, Thomas S, Luo Y, Liu X, Shi Y, Guan R, Magnone SR, Klinghofer V, Johnson EF, Bouska J, Shoemaker A, Oleksijew A, Stoll VS, De Jong R, Oltersdorf T, Li Q, Rosenberg SH, Giranda VL (2006) Isoquinoline-pyridine-based protein kinase B/Akt antagonists: SAR and in vivo antitumor activity. Bioorg Med Chem Lett 16(12):3150–3155. https://doi.org/10.1016/j.bmcl.2006.03.041

    Article  CAS  PubMed  Google Scholar 

  36. Zhu GD, Gandhi VB, Gong J, Luo Y, Liu X, Shi Y, Guan R, Magnone SR, Klinghofer V, Johnson EF, Bouska J, Shoemaker A, Oleksijew A, Jarvis K, Park C, Jong RD, Oltersdorf T, Li Q, Rosenberg SH, Giranda VL (2006) Discovery and SAR of oxindole-pyridine-based protein kinase B/Akt inhibitors for treating cancers. Bioorg Med Chem Lett 16(13):3424–3429. https://doi.org/10.1016/j.bmcl.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  37. Instant JChem, version 5.9.4; ChemAxon: Budapest, Hungary, 2012

  38. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening. 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10–11):647–671

    Article  CAS  PubMed  Google Scholar 

  39. Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49(10):2356–2368. https://doi.org/10.1021/ci900212v

    Article  CAS  PubMed  Google Scholar 

  40. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  41. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  42. Watts KS, Dalal P, Murphy RB, Sherman W, Friesner RA, Shelley JC (2010) Confgen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50(4):534–546. https://doi.org/10.1021/ci100015j

    Article  CAS  PubMed  Google Scholar 

  43. Mahajan P, Chashoo G, Gupta M, Kumar A, Singh PP, Nargotra A (2017) Fusion of structure and ligand based methods for identification of novel CDK2 inhibitors. J Chem Inf Model 57(8):1957–1969. https://doi.org/10.1021/acs.jcim.7b00293

    Article  CAS  PubMed  Google Scholar 

  44. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519. https://doi.org/10.1021/ct900587b

    Article  CAS  PubMed  Google Scholar 

  45. Halgren T (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389. https://doi.org/10.1021/ci800324m

    Article  CAS  PubMed  Google Scholar 

  46. SciFinder. https://scifinder.cas.org. Accessed 11 Apr 2018

  47. Baell JB, Nissink JWM (2018) Seven year itch: pan-assay interference compounds (PAINS) in 2017-utility and limitations. ACS Chem Biol 13(1):36–44. https://doi.org/10.1021/acschembio.7b00903

    Article  CAS  PubMed  Google Scholar 

  48. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  49. The PAINS Remover—CBLigand. http://cbligand.org/PAINS/login.php. Accessed 7 Jun 2018

  50. Zhu GD, Gong J, Gandhi VB, Woods K, Luo Y, Liu X, Guan R, Klinghofer V, Johnson EF, Stoll VS, Mamo M, Li Q, Rosenberg SH, Giranda VL (2007) Design and synthesis of pyridine-pyrazolopyridine-based inhibitors of protein kinase B/Akt. Bioorg Med Chem 15(6):2441–2452. https://doi.org/10.1016/j.bmc.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  51. Zhu GD, Gandhi VB, Gong J, Thomas S, Woods KW, Song X, Li T, Diebold RB, Luo Y, Liu X, Guan R, Klinghofer V, Johnson EF, Bouska J, Olson A, Marsh KC, Stoll VS, Mamo M, Polakowski J, Campbell TJ, Martin RL, Gintant GA, Penning TD, Li Q, Rosenberg SH, Giranda VL (2007) Syntheses of potent, selective, and orally bioavailable indazole-pyridine series of protein kinase B/Akt inhibitors with reduced hypotension. J Med Chem 50(13):2990–3003. https://doi.org/10.1021/jm0701019

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen T, Coover RA, Verghese J, Moran RG, Ellis KC (2014) Phenylalanine-based inactivator of AKT kinase: design, synthesis, and biological evaluation. ACS Med Chem Lett 5(5):462–467. https://doi.org/10.1021/ml500088x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin H, Yamashita DS, Xie R, Zeng J, Wang W, Leber J, Safonov IG, Verma S, Li M, Lafrance L, Venslavsky J, Takata D, Luengo JI, Kahana JA, Zhang S, Robell KA, Levy D, Kumar R, Choudhry AE, Schaber M, Lai Z, Brown BS, Donovan BT, Minthorn EA, Brown KK, Heerding DA (2010) Tetrasubstituted pyridines as potent and selective AKT inhibitors: reduced CYP450 and Herg inhibition of aminopyridines. Bioorg Med Chem Lett 20(2):684–688. https://doi.org/10.1016/j.bmcl.2009.11.061

    Article  CAS  PubMed  Google Scholar 

  54. Gürsel DB, Connell-Albert YS, Tuskan RG, Anastassiadis T, Walrath JC, Hawes JJ, Amlin-Van Schaick JC, Reilly KM (2011) Control of proliferation in astrocytoma cells by the receptor tyrosine kinase/PI3K/AKT signaling axis and the use of PI-103 and TCN as potential anti-astrocytoma therapies. Neuro Oncol 13(6):610–621. https://doi.org/10.1093/neuonc/nor035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Q, Li T, Zhu GD, Gong J, Claibone A, Dalton C, Luo Y, Johnson EF, Shi Y, Liu X, Klinghofer V, Bauch JL, Marsh KC, Bouska JJ, Arries S, De Jong R, Oltersdorf T, Stoll VS, Jakob CG, Rosenberg SH, Giranda VL (2006) Discovery of trans-3,4′-bispyridinylethylenes as potent and novel inhibitors of protein kinase B (PKB/Akt) for the treatment of cancer: synthesis and biological evaluation. Bioorg Med Chem Lett 16(6):1679–1685. https://doi.org/10.1016/j.bmcl.2005.12.017

    Article  CAS  PubMed  Google Scholar 

  56. Rice KD, Kim MH, Bussenius J, Anand NK, Blazey CM, Bowles OJ, Canne-Bannen L, Chan DS, Chen B, Co EW, Costanzo S, DeFina SC, Dubenko L, Engst S, Franzini M, Huang P, Jammalamadaka V, Khoury RG, Klein RR, Laird AD, Le DT, Mac MB, Matthews DJ, Markby D, Miller N, Nuss JM, Parks JJ, Tsang TH, Tsuhako AL, Wang Y, Xu W (2012) Pyrazolopyrimidines as dual Akt/p70S6K inhibitors. Bioorg Med Chem Lett 22(8):2693–2697. https://doi.org/10.1016/j.bmcl.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  57. Chang S, Zhang Z, Zhuang X, Luo J, Cao X, Li H, Tu Z, Lu X, Ren X, Ding K (2012) New thiazole carboxamides as potent inhibitors of Akt kinases. Bioorg Med Chem Lett 22(2):1208–1212. https://doi.org/10.1016/j.bmcl.2011.11.080

    Article  CAS  PubMed  Google Scholar 

  58. Rouse MB, Seefeld MA, Leber JD, McNulty KC, Sun L, Miller WH, Zhang S, Minthorn EA, Concha NO, Choudhry AE, Schaber MD, Heerding DA (2009) Aminofurazans as potent inhibitors of AKT kinase. Bioorg Med Chem Lett 19(5):1508–1511. https://doi.org/10.1016/j.bmcl.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  59. Blake JF, Xu R, Bencsik JR, Xiao D, Kallan NC, Schlachter S, Mitchell IS, Spencer KL, Banka AL, Wallace EM, Gloor SL, Martinson M, Woessner RD, Vigers GP, Brandhuber BJ, Liang J, Safina BS, Li J, Zhang B, Chabot C, Do S, Lee L, Oeh J, Sampath D, Lee BB, Lin K, Liederer BM, Skelton NJ (2012) Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors. J Med Chem 55(18):8110–8127

    Article  CAS  PubMed  Google Scholar 

  60. Zeng Q, Bourbeau MP, Wohlhieter GE, Yao G, Monenschein H, Rider JT, Lee MR, Zhang S, Lofgren J, Freeman D, Li C, Tominey E, Huang X, Hoffman D, Yamane H, Tasker AS, Dominguez C, Viswanadhan VN, Hungate R, Zhang X (2010) 2-Aminothiadiazole inhibitors of AKT1 as potential cancer therapeutics. Bioorg Med Chem Lett 20(5):1652–1656. https://doi.org/10.1016/j.bmcl.2010.01.046

    Article  CAS  PubMed  Google Scholar 

  61. Zeng Q, Allen JG, Bourbeau MP, Wang X, Yao G, Tadesse S, Rider JT, Yuan CC, Hong FT, Lee MR, Zhang S, Lofgren JA, Freeman DJ, Yang S, Li C, Tominey E, Huang X, Hoffman D, Yamane HK, Fotsch C, Dominguez C, Hungate R, Zhang X (2010) Azole-based inhibitors of AKT/PKB for the treatment of cancer. Bioorg Med Chem Lett 20(5):1559–1564. https://doi.org/10.1016/j.bmcl.2010.01.067

    Article  CAS  PubMed  Google Scholar 

  62. Zhan W, Li D, Che J, Zhang L, Yang B, Hu Y, Liu T, Dong X (2014) Integrating docking scores, interaction profiles and molecular descriptors to improve the accuracy of molecular docking: toward the discovery of novel Akt1 inhibitors. Eur J Med Chem 75:11–20. https://doi.org/10.1016/j.ejmech.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  63. Ashton KS, St Jean DJ, Jr Poon SF, Lee MR, Allen JG, Zhang S, Lofgren JA, Zhang X, Fotsch C, Hungate R (2011) Design and synthesis of novel amide AKT1 inhibitors with selectivity over CDK2. Bioorg Med Chem Lett 21(18):5191–5196. https://doi.org/10.1016/j.bmcl.2011.07.056

    Article  CAS  PubMed  Google Scholar 

  64. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK (2008) Medicinal plants and cancer chemoprevention. Curr Drug Metab 9(7):581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology through Project GAP-0141. DBT Project GAP-0141: Establishment of Sub-DIC under BTIS Net programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Nargotra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Abbreviations

All the abbreviations used in the manuscript are listed in Table S14.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, P., Wadhwa, B., Barik, M.R. et al. Combining ligand- and structure-based in silico methods for the identification of natural product-based inhibitors of Akt1. Mol Divers 24, 45–60 (2020). https://doi.org/10.1007/s11030-019-09924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09924-9

Keywords

Navigation