Thermal electron-transfer-induced oxidation of 2-pyrazolines

Abstract

Various 3,5-diaryl-1-phenyl-2-pyrazolines were synthesized, and their thermal oxidation to their corresponding 2-pyrazoles was investigated using tetrabutylammonium peroxydisulfate in acetonitrile solution. Compared to the reported oxidative methods, this oxidizing agent provides a clean and non-expensive oxidative reaction in a short reaction time. Based on the proposed reaction mechanism, the extent of co-planarity of the C3-aryl ring toward C3=N2 double bond of the heterocyclic ring affects the electron-donating ability of the heterocyclic ring and decreases the time of oxidative reaction. The experimental results are supported by cyclic voltammetric measurements.

Graphical abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Scheme 4

References

  1. 1.

    Ali MA, Shaharyar M, Siddiqui AA (2007) Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives. Eur J Med Chem 42:268–275. https://doi.org/10.1016/j.ejmech.2006.08.004

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Ozdemir Z, Kandilci HB, Gumusel B, Calıs U, Bilgin AA (2007) Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur J Med Chem 42:373–379. https://doi.org/10.1016/j.ejmech.2006.09.006

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Jainey PJ, Bhat IK (2012) Antitumor, analgesic, and anti-inflammatory activities of synthesized pyrazolines. Pharm Chem 4:82–87. https://doi.org/10.4103/0975-1483.96621

    CAS  Article  Google Scholar 

  4. 4.

    Ramesh B, Sumana T (2010) Synthesis and anti-inflammatory activity of pyrazolines. Chem Eur J 7:514–516. https://doi.org/10.1155/2010/731675

    CAS  Article  Google Scholar 

  5. 5.

    Karabacak M, Altıntop MD, Çiftçi Hİ, Koga R, Otsuka M, Fujita M, Özdemir A (2015) Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents. Molecules 20:19066–19084. https://doi.org/10.3390/molecules201019066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kumar V, Sareen V, Khatri V, Sareen S (2016) Recent applications of pyrazole and its substituted analogs. Int J Appl Res 2:461–469. ISSN Online: 2394-5869

  7. 7.

    Dai H, Li Y-Q, Du D, Qin X, Zhang X, Yu H-B, Fang J-X (2008) Synthesis and biological activities of novel pyrazole oxime derivatives containing a 2chloro-5-thiazolyl moiety. J Agric Food Chem 56:10805–10810. https://doi.org/10.1021/jf802429x

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Keter FK, Darkwa J (2012) Perspective: the potential of pyrazole-based compounds in medicine. Biometals 25:9–21. https://doi.org/10.1007/s10534-011-9496-4

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ouyang G, Cai X-J, Chen Z, Song BA, Bhadury PS, Yang S, Jin LH, Xue W, Hu D-Y, Zeng S (2008) Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. J Agric Food Chem 56:10160–10167. https://doi.org/10.1021/jf802489e

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Abrigach F, Touzani R (2016) Pyrazole derivatives with NCN junction and their biological activity: a review. Med Chem 6:292–298. https://doi.org/10.4172/medicinal-chemistry.1000359

    Article  Google Scholar 

  11. 11.

    Evai LA, Patonay T, Silva AMS, Pinto DCGA, Cavaleiro JAS (2002) Synthesis of 3-aryl-5-styryl-2-pyrazolines by the reaction of (E, E) cinnamylideneacetophenones with hydrazines and their oxidation into pyrazoles. J Heterocycl Chem 39:751–758. https://doi.org/10.1002/jhet.5570390421

    Article  Google Scholar 

  12. 12.

    Levai A, Silva Artur MS, PintoDiana CGA, Cavaleiro Jose AS, Alkorta I, Elguero J, Jekö J (2004) Synthesis of pyrazolyl-2-pyrazolines by treatment of 3-(3aryl-3-oxopropenyl)chromen-4-ones with hydrazine and their oxidation to bis(pyrazoles). Eur J Org Chem 2004:4672–4679. https://doi.org/10.1002/ejoc.200400465

    CAS  Article  Google Scholar 

  13. 13.

    Sabitha G, Reddy GSKK, Reddy CS, Fatima N, Yadav JS (2003) Zr(NO3)4: a versatile oxidizing agent for aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines. Synthesis 8:1267–1271. https://doi.org/10.1055/s-2003-39410

    Article  Google Scholar 

  14. 14.

    Azarifar D, Zolfigol MA, Maleki B (2004) Silica-supported 1,3-dibromo-5,5dimethylhydantoin (DBH) as a useful reagent for microwave-assisted aromatization of 1,3,5-trisubstituted pyrazolines under solvent-free conditions. Synthesis 11:1744–1746. https://doi.org/10.5012/bkcs.2004.25.1.023

    Article  Google Scholar 

  15. 15.

    Han B, Liu Z, Liu Q, Yang L, Liu Z-L, Yu W (2006) An efficient aerobic oxidative aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines. Tetrahedron 62:2492–2496. https://doi.org/10.1016/j.tet.2005.12.056

    CAS  Article  Google Scholar 

  16. 16.

    Zolfigol MA, Azarifar D, Maleki B (2004) Trichloroisocyanuric acid as a novel oxidizing agent for the oxidation of 1,3,5-trisubstituted pyrazolines under both heterogeneous and solvent free conditions. Tetrahedron Lett 45:2181–2183. https://doi.org/10.1016/j.tetlet.2004.01.038

    CAS  Article  Google Scholar 

  17. 17.

    Chai L, Zhao Y, Sheng Q, Liu Z-Q (2006) Aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines with HIO3 and I2O5 in water. Tetrahedron Lett 47:9283–9285. https://doi.org/10.1016/j.tetlet.2006.10.108

    CAS  Article  Google Scholar 

  18. 18.

    Nakamichi N, Kawashita Y, Hayashi M (2002) Oxidative aromatization of 1,3,5-trisubstituted pyrazolines and Hantzsch 1,4-dihydropyridines by Pd/C in acetic acid. Org Lett 4:3955–3957. https://doi.org/10.1021/ol0268135

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Aggarwal R, Kumar V, Singh SP (2007) Synthesis of some new 1-(6-fluorobenzothiazol-2-yl)-3-(4-fluorophenyl)-5-arylpyrazolines and their iodine(III) mediated oxidation to corresponding pyrazoles. Indian J Chem 46B:1332–1336. https://doi.org/10.1002/chin.200750139

    CAS  Article  Google Scholar 

  20. 20.

    Huang YR, Katzenellenbogen JA (2000) Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles: novel ligands for the estrogen receptor. Org Lett 2:2833–2836. https://doi.org/10.1021/ol0062650

    CAS  Article  Google Scholar 

  21. 21.

    Ananthnag GS, Adhikari A, Balakrishna MS (2014) Iron-catalyzed aerobic oxidative aromatization of 1,3,5-trisubstituted pyrazolines. Catal Commun 43:240–243. https://doi.org/10.1016/j.catcom.2013.09.002

    CAS  Article  Google Scholar 

  22. 22.

    Kumar A, Maurya RA, Sharma S (2009) Oxidative aromatization of 1,4-dihydropyridines and pyrazolines using HbA–H2O2: an efficient biomimetic catalyst system providing metabolites of drug candidates. Bioorg Med Chem Lett 19:4432–4436. https://doi.org/10.1016/j.bmcl.2009.05.056

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Pérez-Aguilar MC, Valdés C (2015) Synthesis of chiral pyrazoles: a 1,3-dipolar cycloaddition/[1,5]sigmatropic rearrangement with stereoretentive migration of a stereogenic group. Angew Chem Int Ed 54:13729–13733. https://doi.org/10.1002/anie.201506881

    CAS  Article  Google Scholar 

  24. 24.

    Zhang Q, Meng L-G, Wang K, Wang L (2015) nBu3P-catalyzed desulfonylative [3 + 2] cycloadditions of allylic carbonates with arylazosulfones to pyrazole derivatives. Org Lett 17:872–875. https://doi.org/10.1021/ol503735c

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Zheng Y, Zhang X, Yao R, Wen YC, Huang J, Xu X (2016) 1,3-Dipolar cycloaddition of alkyne-tethered N-tosylhydrazones: synthesis of fused polycyclic pyrazoles. J Org Chem 81:11072–11080. https://doi.org/10.1021/acs.joc.6b02076

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    O’Connor MJ, Sun C, Guan X, Sabbasani VR, Lee D (2016) Sequential 1,4-/1,2-addition of lithium(trimethylsilyl)diazomethane onto cyclic enones to induce C–C fragmentation and N–Li insertion. Angew Chem Int Ed 55:2222–2225. https://doi.org/10.1002/anie.201510152

    CAS  Article  Google Scholar 

  27. 27.

    Chen F-E, Li Y-Y, Xu M, Jia H-Q (2002) Tetrabutylammonium peroxydisulfate in organic synthesis; XIII. A simple and highly efficient one-pot synthesis of nitriles by nickel-catalyzed oxidation of primary alcohols with tetrabutylammonium peroxydisulfate. Synthesis 13:1804–1806. https://doi.org/10.1055/s-2002-33906

    Article  Google Scholar 

  28. 28.

    Chen F-E, Peng Z-Z, Fu H, Liu J-D, Shao L-Y (1999) Tetrabutylammonium peroxydisulfate in organic synthesis. Part 8. An efficient and convenient nickel catalyzed oxidation of primary amines to nitriles with tetrabutylammonium peroxydisulfate. J Chem Res (S) 12:726–727. https://doi.org/10.1039/A906485K

    Article  Google Scholar 

  29. 29.

    Choi HC, Cho KI, Kim YH (1995) Novel direct tetrahydropyranylation of alcohols with tetrahydropyran and tetra-n-butylammonium peroxydisulfate. Synlett 2:207–208. https://doi.org/10.1055/s-1995-4890

    Article  Google Scholar 

  30. 30.

    Jung JC, Kim YH, Lee K (2011) Practical β-masked formylation and acetylation of electron-deficient olefins utilizing tetra(n-butyl)ammonium peroxydisulfate. Tetrahedron Lett 52:4662–4664. https://doi.org/10.1016/j.tetlet.2011.06.116

    CAS  Article  Google Scholar 

  31. 31.

    Yang SG, Park MY, Kim YH (2002) Facile and chemo-selective cleavages of allyl ethers utilizing tetrabutylammonium sulfate radical species. Synlett 3:492–494. https://doi.org/10.1055/s-2002-20475

    Article  Google Scholar 

  32. 32.

    Chen F-E, Liu J-D, Fu H, Peng Z-Z, Shao L-Y (2000) Tetrabutylammonium peroxydisulfate in organic synthesis; VII. A facile and efficient method for the regeneration of carbonyl compounds from semicarbazones by tetrabutylammonium peroxydisulfate. Synth Commun 30:2295–2299. https://doi.org/10.1080/00397919908086071

    CAS  Article  Google Scholar 

  33. 33.

    Yang SG, Hwang JP, Park MY, Lee K, Kim YH (2007) Highly efficient epoxidation of electron-deficient olefins with tetrabutylammonium peroxydisulfate. Tetrahedron 63:5184–5188. https://doi.org/10.1016/j.tet.2007.03.167

    CAS  Article  Google Scholar 

  34. 34.

    Whang PJ, Gak Yang S, Hae Kim Y (1997) Novel α-iodination of functionalized ketones with iodine mediated by bis(tetra-n-butylammonium) peroxydisulfate. Chem Commun 15:1355–1356. https://doi.org/10.1039/A702524F

    Article  Google Scholar 

  35. 35.

    Park MY, Yang SG, Jadhav V, Kim YH (2004) Practical and regioselective brominations of aromatic compounds using tetrabutylammonium peroxydisulfate. Tedrahedron Lett 45:4887–4890. https://doi.org/10.1016/j.tetlet.2004.04.112

    CAS  Article  Google Scholar 

  36. 36.

    Yang SG, Kim YH (1999) A practical iodination of aromatic compounds using tetrabutylammonium peroxydisulfate and iodine. Tetrahedron Lett 40:6051–6054. https://doi.org/10.1016/S0040-4039(99)01236-8

    CAS  Article  Google Scholar 

  37. 37.

    Chen F-E, Lu Y-W, He Y-P, Luo Y-F, Yan M-G (2002) Tetrabutylammonium peroxydisulfate in organic synthesis. XII. A convenient and practical procedure for the selective oxidation of thiols to disulfides with tetrabutylammonium peroxydisulfate under solvent-free conditions. Synth Commun 32:3487–3492. https://doi.org/10.1081/SCC-120014782

    CAS  Article  Google Scholar 

  38. 38.

    Memarian HR, Soleymani M (2011) Ultrasound assisted dehydrogenation of 2-oxo-1,2,3,4-tetrahydrpyrimidine-5-carboxamides. Ultrason Sonochem 18:745–752. https://doi.org/10.1016/j.ultsonch.2010.10.006

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Park HS, Lee HY, Kim YH (2005) Facile Barton–McCombie deoxygenation of alcohols with tetrabutylammonium peroxydisulfate and formate ion. Org Lett 7:3187–3190. https://doi.org/10.1021/ol050886h

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Memarian HR, Ghahremani S (2017) Electron transfer-induced oxidation of 2,3-dihydroquinazolin-4(1H)-ones. Z Naturforsch 72b:403–408. https://doi.org/10.1515/znb-2016-0260

    CAS  Article  Google Scholar 

  41. 41.

    Memarian HR, Kalantari M (2017) Steric and electronic substitution effects on the thermal oxidation of 5-carboethoxy-2-oxo-1,2,3,4-tetrahydropyridines. J Iran Chem Soc 14:143–155 and references cited therein. https://doi.org/10.1007/s13738-016-0966-z

    Article  Google Scholar 

  42. 42.

    Memarian HR, Sanchooli E (2017) Photo-dehydrogenation of 4,6-diaryl-2-oxo-1,2,3,4-tetrahydropyrimidines. J Iran Chem Soc 14:1335–1346 and references cited therein. https://doi.org/10.1007/s13738-017-1084-2

    CAS  Article  Google Scholar 

  43. 43.

    Soltani M, Memarian HR, Sabzyan H (2018) Spectroscopic studies of aryl substituted 1-phenyl-2-pyrazolines: steric and electronic substitution effects. J Mol Struct 1173:903–917. https://doi.org/10.1016/j.molstruc.2018.07.052

    CAS  Article  Google Scholar 

  44. 44.

    Zhenglin Y, Shikang W (1993) A study on the photoinduced charge transfer process of triaryl-2-pyrazoline compounds. J Lumin 54:303–308. https://doi.org/10.1016/0022-2313(93)90089-6

    CAS  Article  Google Scholar 

  45. 45.

    Bozkurt E, Gul HI, Mete E (2018) Solvent and substituent effect on the photophysical properties of pyrazoline derivatives: a spectroscopic study. J Photochem Photobiol A Chem 352:35–42. https://doi.org/10.1016/j.jphotochem.2017.10.010

    CAS  Article  Google Scholar 

  46. 46.

    Fahrni CJ, Yang L, VanDerveer DG (2003) Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophore: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation. J Am Chem Soc 125:3799–3812. https://doi.org/10.1021/ja028266o

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Research Council and Office of Graduate Studies of the University of Isfahan for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Memarian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30871 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Memarian, H.R., Minakar, R. Thermal electron-transfer-induced oxidation of 2-pyrazolines. Mol Divers 23, 953–964 (2019). https://doi.org/10.1007/s11030-019-09922-x

Download citation

Keywords

  • Electron transfer
  • Oxidation
  • Peroxydisulfates
  • 2-Pyrazolines
  • Substituent effects