Skip to main content
Log in

Synthesis of benzosuberone-tethered spirooxindoles: 1-3-dipolar cycloaddition of azomethine ylides and arylidene benzosuberones

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Expedient synthesis of benzosuberone-tethered spirooxindoles was accomplished by a three-component 1,3-dipolar cycloaddition reaction between azomethine ylide (generated in situ) and arylidene benzosuberone. This protocol offers good yield and wide functional group tolerance under mild reaction condition with high regio- and stereoselectivities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed 2:565–598. https://doi.org/10.1002/anie.196305651

    Article  Google Scholar 

  2. Ryan JH (2015) 1,3-Dipolar cycloaddition reactions of azomethine ylides with aromatic dipolarophiles. Arkivoc. https://doi.org/10.3998/ark.5550190.p008.928

    Article  Google Scholar 

  3. Gothelf KV, Jørgensen KA (1998) Asymmetric 1,3-dipolar cycloaddition reactions. Chem Rev 2:863–910. https://doi.org/10.1021/cr970324e

    Article  Google Scholar 

  4. Arumugam N, Kumar RS, Almansour AI, Perumal S (2013) Multicomponent 1,3-dipolar cycloaddition reactions in the construction of hybrid spiroheterocycles. Curr Org Chem 17:1929. https://doi.org/10.2174/13852728113179990091

    Article  CAS  Google Scholar 

  5. Harju H, Yli-Kauhaluoma J (2005) Recent advances in 1,3-dipolar cycloaddition reactions on solid supports. Mol Divers 9:187–207. https://doi.org/10.1007/s11030-005-1339-1

    Article  CAS  PubMed  Google Scholar 

  6. Padwa A, Pearson WH (2003) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products. Wiley, New York. https://doi.org/10.1002/0471221902

    Book  Google Scholar 

  7. Najera C, Sansano JM (2003) Azomethine ylides in organic synthesis. Curr Org Chem 7:1105–1150. https://doi.org/10.2174/1385272033486594

    Article  CAS  Google Scholar 

  8. Galliford CV, Scheid KA (2007) Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew Chem Int Ed 46:8748–8758. https://doi.org/10.1002/anie.200701342 and references cited therein

    Article  CAS  Google Scholar 

  9. Yu B, Zheng YC, Shi XJ, Qi PP, Liu HM (2016) Natural product-derived spirooxindole fragments serve as privileged substructures for discovery of new anticancer agents. Anticancer Agents Med Chem 16:1315–1324. https://doi.org/10.2174/1871520615666151102093825

    Article  CAS  PubMed  Google Scholar 

  10. Yang YT, Zhu JF, Liao G, Xu HJ, Yu B (2017) The development of biologically important spirooxindoles as new antimicrobial agents. Curr Med Chem 25:2233–2244. https://doi.org/10.2174/0929867325666171129131311

    Article  CAS  Google Scholar 

  11. Hati S, Tripathy S, Dutta PK, Agarwal R, Srinivasan R, Singh A, Singh S, Sen S (2016) Spiro[pyrrolidine-3, 3′-oxindole] as potent anti-breast cancer compounds: their design, synthesis, biological evaluation and cellular target identification. Sci Rep 6:32213. https://doi.org/10.1038/srep32213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ranjith Kumar R, Perumal S, Senthilkumar P, Yogeeswari P, Sriram D (2008) Discovery of antimycobacterial spiro-piperidin-4-ones: an atom economic, stereoselective synthesis, and biological intervention. J Med Chem 51:5731–5735. https://doi.org/10.1021/jm800545k

    Article  CAS  Google Scholar 

  13. Ye N, Chen H, Wold EA, Shi PY, Zhou J (2016) Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect Dis 2:382–392. https://doi.org/10.1021/acsinfecdis.6b00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller P, Wang S (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction. J Med Chem 49:3432–3435. https://doi.org/10.1021/jm051122a

    Article  CAS  PubMed  Google Scholar 

  15. Haddad S, Boudriga S, Akhaja TN, Raval JP, Porzio F, Soldera A, Askri M, Knorr M, Rousselin Y, Kubicki M, Rajani D (2015) A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: in vitro antibacterial, antifungal, antimalarial and antitubercular studies. New J Chem 39:520–528. https://doi.org/10.1039/C4NJ01008F

    Article  CAS  Google Scholar 

  16. Yu B, Shi X-J, Qi P-P, Yu D-Q, Liu H-M (2014) Design, synthesis and biological evaluation of novel steroidal spiro-oxindoles as potent antiproliferative agents. J Steroid Biochem Mol Biol 141:121–134. https://doi.org/10.1016/j.jsbmb.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  17. Yu B, Yu D-Q, Liu H-M (2015) Spirooxindoles: promising scaffolds for anticancer agents. Eur J Med Chem 97:673–698. https://doi.org/10.1016/j.ejmech.2014.06.056 and references cited therein

    Article  CAS  PubMed  Google Scholar 

  18. Yu B, Yu Z, Qi P-P, Yu D-Q, Liu H-M (2015) Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles: success and challenges. Eur J Med Chem 95:35–40. https://doi.org/10.1016/j.ejmech.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  19. Wang S, Sun W, Zhao Y, McEachern D, Meaux I, Barrière C, Stuckey JA, Meagher JL, Bai L, Liu L, Hoffman-Luca CG, Lu J, Shangary S, Yu S, Bernard D, Aguilar A, Dos-Santos O, Besret L, Guerif S, Pannier P, Gorge-Bernat D, Debussche L (2014) SAR405838: an optimized inhibitor of MDM2–p53 interaction that induces complete and durable tumor regression. Cancer Res 74:5855–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schreiber J, Leimgruber W, Pesaro M, Schudel P, Eschenmoser A (1959) Synthese des colchicins. Angew Chem 71:637–640. https://doi.org/10.1002/ange.19590712002

    Article  CAS  Google Scholar 

  21. Geissman TA (1962) Chemistry of Flavonoid Compounds. Pergamon, Oxford, p 468

    Google Scholar 

  22. Runeckles VC, Tso TC (1972) Recent advances in phytochemistry. Academic Press, New York, p 247

    Book  Google Scholar 

  23. Pan E, Harinantanaina L, Brodie PJ, Miller JS, Callmander MW, Rakotonandrasana S, Rakotobe E, Rasamison VE, Kingston DGI (2010) Four diphenylpropanes and a cycloheptadibenzofuran from bussea sakalava from the madagascar dry forest(1). J Nat Prod 73:1792–1795. https://doi.org/10.1021/np100411d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Pan X, Cui Y, Chen Y (1996) The first total synthesis of (±)-demethyl salvicanol. Tetrahedron 52:10659–10666. https://doi.org/10.1016/0040-4020(96)00604-7

    Article  CAS  Google Scholar 

  25. Fraga BM, Diaz CE, Guadano A, Gonzalez-Coloma A (2005) Diterpenes from salvia broussonetii transformed roots and their insecticidal activity. J Agric Food Chem 53:5200–5206. https://doi.org/10.1021/jf058045c

    Article  CAS  PubMed  Google Scholar 

  26. Singh B, Kumar A, Joshi P, Guru SK, Kumar S, Wani ZA, Mahajan G, Hussain A, Qazi AK, Kumar A, Bharate SS, Gupta BD, Sharma PR, Hamid A, Saxena AK, Mondhe DM, Bhushan S, Bharate SB, Vishwakarma RA (2015) Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org Biomol Chem 13:5674–5689. https://doi.org/10.1039/C5OB00406C

    Article  CAS  PubMed  Google Scholar 

  27. Bhattacharyya B, Panda D, Gupta S, Banerjee M (2008) Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 28:155–183. https://doi.org/10.1002/med.20097

    Article  CAS  PubMed  Google Scholar 

  28. Behbehani H, Dawood KM, Farghaly TA (2018) Biological evaluation of benzosuberones. Expert Opin Ther Pat 28:5–29. https://doi.org/10.1080/13543776.2018.1389898

    Article  CAS  PubMed  Google Scholar 

  29. Farghaly TA, Hafez NAA, Raga EA, Awad HM, Abdallad MM (2010) Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives. Eur J Med Chem 45:492–500. https://doi.org/10.1016/j.ejmech.2009.10.033

    Article  CAS  PubMed  Google Scholar 

  30. Albrechta S, Al-Lakkis-Wehbe M, Orsini A, Defoin A, Pale P, Salomon E, Tarnus C (2011) Amino-benzosuberone: a novel warhead for selective inhibition of human aminopeptidase-N/CD13. Bioorg Med Chem 19:1434–1449. https://doi.org/10.1016/j.bmc.2011.01.008

    Article  CAS  Google Scholar 

  31. Martz KE, Dorn A, Baur B, Schattel V, Goettert MI, Mayer-Wrangowski SC, Rauh D, Laufer SA (2012) Targeting the hinge glycine flip and the activation loop: novel approach to potent p38α inhibitors. J Med Chem 55:7862–7874. https://doi.org/10.1021/jm300951u

    Article  CAS  PubMed  Google Scholar 

  32. Tanpure RP, George CS, Sriram M, Strecker TE, Tidmore JK, Hamel E, Charlton-Sevcik AK, Chaplin DJ, Trawick ML, Pinney KG (2012) An amino-benzosuberene analogue that inhibits tubulin assembly and demonstrates remarkable cytotoxicity. Med Chem Commun 3:720–724. https://doi.org/10.1039/C2MD00318J

    Article  CAS  Google Scholar 

  33. Sajja Y, Vanguru S, Jilla L, Vulupala HR, Bantu R, Yogeswari P, Sriram D, Nagarapu L (2016) A convenient synthesis and screening of benzosuberone bearing 1,2,3-triazoles against Mycobacterium tuberculosis. Bioorg Med Chem Lett 26:4292–4295. https://doi.org/10.1016/j.bmcl.2016.07.039

    Article  CAS  PubMed  Google Scholar 

  34. Sajja Y, Vulupala HR, Bantu R, Nagarapu L, Vasamsetti SB, Kotamraju S, Nanubolu JB (2016) Three-component, one-pot synthesis of benzo[6,7]cyclohepta[1,2-b]pyridine derivatives under catalyst free conditions and evaluation of their anti-inflammatory activity. Bioorg Med Chem Lett 26:858–863. https://doi.org/10.1016/j.bmcl.2015.12.078

    Article  CAS  PubMed  Google Scholar 

  35. Tόth G, Lévai A, Szöllősy A, Duddeck H (1993) Synthesis and conformational analysis spiropyrazoline isomers. Tetrahedron 49:863–880. https://doi.org/10.1016/S0040-4020(01)80329-X

    Article  Google Scholar 

  36. Girgis AS (2006) Synthesis and stereochemical structures of novel spiro[benzocycloheptene-6(5H), 3′-[3H]pyrazol]-5-ones. J Chem Res 2006:81–83. https://doi.org/10.3184/030823406776330837

    Article  Google Scholar 

  37. Behbehani H, Ibrahim HM, Dawood KM (2015) Ultrasound-assisted regio- and stereoselective synthesis of bis-[1′,4′-diaryl-1-oxo-spiro-benzosuberane-2,5′-pyrazoline] derivatives via 1,3-dipolar cycloaddition. RSC Adv 5:25642–25649. https://doi.org/10.1039/C5RA02972D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SM acknowledges the award of Emeritus Scientist Scheme [21(1030)/16/EMR II] from CSIR, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanmugam Muthusubramanian or Subbu Perumal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.V., Rani, G.U., Divyalakshmi, M. et al. Synthesis of benzosuberone-tethered spirooxindoles: 1-3-dipolar cycloaddition of azomethine ylides and arylidene benzosuberones. Mol Divers 23, 669–680 (2019). https://doi.org/10.1007/s11030-018-9901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9901-9

Keywords

Navigation