Skip to main content
Log in

Synthetic applications and methodology development of Chan–Lam coupling: a review

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Chan–Lam coupling is one of the most popular and easy methods to perform arylation of amines (N-arylations). This cross-coupling is generally performed by reacting aryl boronate derivatives with a variety of substrates involving nitrogen containing functional groups such as amines, amides, ureas, hydrazine, carbamates. This article summarizes the synthetic applications of this reaction and the efforts of scientists to develop novel and efficient methodologies for this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Fig. 3
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Fig. 4
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Fig. 5
Scheme 44
Fig. 6
Fig. 7
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Fig. 8
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Fig. 9
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Fig. 10
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Fig. 11
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Fig. 12
Fig. 13
Scheme 81
Fig. 14
Scheme 82
Scheme 83
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Fig. 22
Scheme 88
Scheme 89
Fig. 23
Scheme 90
Scheme 91
Scheme 92
Fig. 24
Scheme 93
Fig. 25
Scheme 94
Scheme 95
Scheme 96
Scheme 97
Scheme 98
Fig. 26
Fig. 27
Scheme 99
Fig. 28
Fig. 29
Scheme 100
Scheme 101
Fig. 30
Scheme 102
Scheme 103
Scheme 104
Scheme 105
Scheme 106
Scheme 107
Fig. 31
Scheme 108
Scheme 109
Fig. 32
Scheme 110
Fig. 33
Scheme 111
Scheme 112
Scheme 113
Fig. 34
Fig. 35
Scheme 114
Scheme 115
Scheme 116
Scheme 117
Scheme 118

Similar content being viewed by others

References

  1. Raghuvanshi DS, Gupta AK, Singh KN (2012) Nickel mediated N-arylation with aryl boronic acid: an avenue to Chan–Lam coupling. Org Lett 14:4326–4329. https://doi.org/10.1021/ol3021836

    Article  CAS  PubMed  Google Scholar 

  2. Inamoto K, Nozawa K, Kadokawa J, Kondo Y (2012) Efficient use of a surfactant for copper-catalyzed coupling reaction of arylboronic acids with imidazoles in water. Tetrahedron 68:7794–7798. https://doi.org/10.1016/j.tet.2012.07.042

    Article  CAS  Google Scholar 

  3. Naya L, Larrosa M, Rodriguez R, Cruces J (2012) Selective copper-promoted cross-coupling reaction of anilines and alkylboranes. Tetrahedron Lett 53:769–772. https://doi.org/10.1016/j.tetlet.2011.11.144

    Article  CAS  Google Scholar 

  4. Reddy KR, Kumar NS, Sreedhar B, Kantam ML (2006) N-Arylation of nitrogen heterocycles with aryl halides and arylboronic acids catalyzed by cellulose supported copper(0). J Mol Catal A Chem 252:136–141. https://doi.org/10.1016/j.molcata.2006.02.053

    Article  CAS  Google Scholar 

  5. Hibi S, Ueno K, Nagato S, Kawano K, Ito K, Norimine Y, Takenaka O, Hanada T, Yonaga M (2012) Discovery of 2-(2-Oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (Perampanel): A Novel, Non competitive α-Amino-3-hydroxy-5-methyl-4-isoxazolepropanoic Acid (AMPA) Receptor Antagonist. J Med Chem 55:10584–10600

    Article  CAS  PubMed  Google Scholar 

  6. Strouse JJ, Jeselnik M, Tapaha F, Jonsson CB, Parker WB, Arterburn JB (2005) Copper catalyzed arylation with boronic acids for the synthesis of N1-aryl purine nucleosides. Tetrahedron Lett 46:5699–5702. https://doi.org/10.1016/j.tetlet.2005.06.083

    Article  CAS  Google Scholar 

  7. Appiah-kubi G, Seaton K, Vasiliev A (2014) Functionalization of silica surface using Chan–Lam coupling. Tetrahedron Lett 55:2722–2726. https://doi.org/10.1016/j.tetlet.2014.03.050

    Article  CAS  Google Scholar 

  8. Guo H, Chen G, Wu M, Ma J, Jia Q (2017) Preparation of a porous aromatic framework via the Chan–Lam reaction: a coating for solid-phase microextraction of antioxidants and preservatives. Microchim Acta 184:4409–4416. https://doi.org/10.1007/s00604-017-2461-3

    Article  CAS  Google Scholar 

  9. Graaf MD, Moeller KD (2016) Chemoselectivity and the Chan–Lam coupling reaction: adding amino acids to polymer-coated microelectrode arrays. J Org Chem 81:1527–1534. https://doi.org/10.1021/acs.joc.5b02656

    Article  CAS  PubMed  Google Scholar 

  10. Medda A, Pal G, Singha R, Hossain T, Saha A, Das AR (2013) Expedient synthesis of biologically potent aryloxycoumarins and (aryloxyimino)ethylcoumarins via copper(II)-promoted Chan–Lam coupling reaction. Synth Commun 43:169–181. https://doi.org/10.1080/00397911.2011.594544

    Article  CAS  Google Scholar 

  11. Sueki S, Kuninobu Y (2013) Copper-catalyzed N- and O-alkylation of amines and phenols using alkylborane reagents. Org Lett 15:1544–1547. https://doi.org/10.1021/ol400323z

    Article  CAS  PubMed  Google Scholar 

  12. Cermak JK, Cirkva V (2014) Copper-mediated synthesis of mono- and dichlorinated diaryl ethers. Tetrahedron Lett 55:4185–4188. https://doi.org/10.1016/j.tetlet.2014.06.035

    Article  CAS  Google Scholar 

  13. El Khatib M, Molander GA (2014) Copper(II)-mediated O-arylation of protected serines and threonines. Org Lett 16:4944–4947. https://doi.org/10.1021/ol5024689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mudryk B, Zheng B, Chen K, Eastgate MD (2014) Development of a robust process for the preparation of high quality dicyclopropylamine hydrochloride. Org Process Res Dev 18:520–527. https://doi.org/10.1021/op500031z

    Article  CAS  Google Scholar 

  15. McGarry KA, Duenas AA, Clark TB (2015) Selective formation of ortho-aminobenzylamines by the copper catalyzed amination of benzylamine boronate esters. J Org Chem 80:7193–7204. https://doi.org/10.1021/acs.joc.5b01074

    Article  CAS  PubMed  Google Scholar 

  16. Wang R, Wang L, Zhang K, Li J, Zou D, Wu Y, Wu Y (2015) Facile synthesis of trifluoroethyl aryl ethers through copper-catalyzed coupling of CF3CH2OH with aryl- and heteroaryl boronic acid. Tetrahedron Lett 56:4815–4818. https://doi.org/10.1016/j.tetlet.2015.06.066

    Article  CAS  Google Scholar 

  17. Marcum JS, McGarry KA, Ferber CJ, Clark TB (2016) Synthesis of biaryl ethers by the copper-catalyzed Chan Evans–Lam etherification from benzylic amine boronate esters. J Org Chem 81:7963–7969. https://doi.org/10.1021/acs.joc.6b01254

    Article  CAS  PubMed  Google Scholar 

  18. Dimakos V, Garrett GE, Taylor MS (2017) Site-selective, copper-mediated O-arylation of carbohydrate derivatives. J Am Chem Soc 193:15515–15521. https://doi.org/10.1021/jacs.7b09420

    Article  CAS  Google Scholar 

  19. Rossi SA, Shimkin KW, Xu Q, Mori-Quiroz LM, Watson DA (2013) Selective formation of secondary amides via the copper-catalyzed cross-coupling of alkylboronic acids with primary amides. Org Lett 15:2314–2317. https://doi.org/10.1021/ol401004r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Srivastava VP, Yadav DK, Yadav AK, Watal G, Yadav LDS (2013) Copper-catalyzed formamidation of arylboronic acids: direct access to formanilides. Synlett 24:1423–1427

    Article  CAS  Google Scholar 

  21. Battula SRK, Subbareddy GV, Chakravarthy IE (2014) A mild and efficient copper-catalyzed N-arylation of unprotected sulfonimidamides using boronic acids. Tetrahedron Lett 55:517–520. https://doi.org/10.1016/j.tetlet.2013.11.084

    Article  CAS  Google Scholar 

  22. Nandni GC, Kota SR, Govender T, Kruger HG, Arvidsson PI (2014) Cu(OAc)2 promoted Chan–Evans–Lam C–N cross coupling reactions on the N- and N′-nitrogen atoms of sulfonimidamides with aryl boronic acids. Tetrahedron 70:5428–5433

    Article  CAS  Google Scholar 

  23. Nasrollahzadeh M, Ehsani A, Maham M (2014) Copper-catalyzed N-arylation of sulfonamides with boronic acids in water under ligand-free and aerobic conditions. Synlett 25:505–508

    Article  CAS  Google Scholar 

  24. Alapati MLPR, Abburu SR, Mutyala KR, Mukkamala SB (2016) Copper (I) iodide-catalyzed amidation of phenylboronic acids/aryl bromides using 4-dimethylaminopyridine as ligand. Synth Commun 46:1242–1248. https://doi.org/10.1080/00397911.2016.1195844

    Article  CAS  Google Scholar 

  25. Sahoo H, Mukherjee S, Grandhi GS, Selvakumar J, Baidya M (2017) Copper catalyzed C–N cross-coupling reaction of aryl boronic acids at room temperature through chelation assistance. J Org Chem 82:2764–2771. https://doi.org/10.1021/acs.joc.7b00002

    Article  CAS  PubMed  Google Scholar 

  26. Xu Y, Su Q, Dong W, Peng Z, An D (2017) The Chan–Evans–Lam N-arylation of phosphonic/phosphinic amides. Tetrahedron 73:4602–4609. https://doi.org/10.1016/j.tet.2017.06.028

    Article  CAS  Google Scholar 

  27. Chen T, Huang Q, Luo Y, Hu Y, Lu W (2013) Cu-mediated selective O-arylation on C-6 substituted pyridin-2-ones. Tetrahedron Lett 54:1401–1404. https://doi.org/10.1016/j.tetlet.2012.12.126

    Article  CAS  Google Scholar 

  28. Chen T, Luo Y, Hu Y, Yang B, Lu W (2013) Synthesis and biological evaluation of novel 1,6-diarylpyridin-2(1H)-one analogs. Eur J Med Chem 64:613–620. https://doi.org/10.1016/j.ejmech.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  29. Chen T, Luo Y, Sheng L, Li J, Hu Y, Lu W (2013) Synthesis and in vitro cytotoxic evaluation of novel N-(3,4,5-trimethoxyphenyl)pyridin-2(1H)-one derivatives. Mol Divers 17:435–444. https://doi.org/10.1007/s11030-013-9442-1

    Article  CAS  PubMed  Google Scholar 

  30. Morellato L, Huteau V, Pochet S (2014) Synthesis of novel 9-aryl and heteroarylpurine derivatives via copper mediated coupling reaction. Tetrahedron Lett 55:1625–1627. https://doi.org/10.1016/j.tetlet.2014.01.091

    Article  CAS  Google Scholar 

  31. Chen J, Natte K, Man NY, Stewart SG, Wu XF (2015) Convenient copper-mediated Chan–Lam coupling of 2-aminopyridine: facile synthesis of N-arylpyridin-2-amines. Tetrahedron Lett 56:4843–4847. https://doi.org/10.1016/j.tetlet.2015.06.092

    Article  CAS  Google Scholar 

  32. Sun N, Zhang H, Mo W, Hu B, Shen Z, Hu X (2013) Synthesis of aryl thiocyanates via copper-catalyzed aerobic oxidative cross-coupling between arylboronic acids and KSCN. Synlett 24:1443–1447

    Article  CAS  Google Scholar 

  33. Rizwan K, Karakaya I, Heitz D, Zubair M, Rasool N, Molander GA (2015) Copper-mediated N-arylation of methyl 2-aminothiophene-3-carboxylate with organoboron reagents. Tetrahedron Lett 56:6839–6842. https://doi.org/10.1016/j.tetlet.2015.10.080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pulakhandam SK, Katari NK, Manda RPR (2017) Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C–S Bond formation by “Chan–Lam Cross-Coupling” reaction. J Chem Sci 129:203–210. https://doi.org/10.1007/s12039-016-1217-7

    Article  CAS  Google Scholar 

  35. Gao J, Shao Y, Zhu J, Zhu J, Mao H, Wang X, Lv X (2014) One-pot approach to 1,2-disubstituted indoles via Cu(II)-catalyzed coupling/cyclization under aerobic conditions and its application for the synthesis of polycyclic indoles. J Org Chem 79:9000–9008. https://doi.org/10.1021/jo501250u

    Article  CAS  PubMed  Google Scholar 

  36. Chen CH, Liu QQ, Ma XP, Feng Y, Liang C, Pan CX, Su GF, Mo DL (2017) Copper-catalyzed selective N-vinylation of 3-(hydroxyimino)indolin-2-ones with alkenyl boronic acids: synthesis of N-vinyl nitrones and spirooxindoles. J Org Chem 82:6417–6425. https://doi.org/10.1021/acs.joc.7b00620

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Cheng X, Li J, Li J, Zhang Y, Hai L, Wu Y (2017) Copper(II)-mediated O-arylation of 3-hydroxy-2-oxindoles with boronic acids at room temperature. Tetrahedron Lett 58:3380–3384. https://doi.org/10.1016/j.tetlet.2017.07.051

    Article  CAS  Google Scholar 

  38. Beyer A, Castanheiro T, Busca P, Prestat G (2015) Copper(I)/copper(II)-assisted tandem catalysis: the case study of Ullmann/Chan–Evans–Lam N 1,N 3-diarylation of 3-aminopyrazole. Chem Cat Chem 7:2433–2436. https://doi.org/10.1002/cctc.201500510/full

    Article  CAS  Google Scholar 

  39. Rasheed S, Rao DN, Das P (2015) Copper-catalyzed inter-and intramolecular C–N bond formation: synthesis of benzimidazole-fused heterocycles. J Org Chem 80:9321–9327. https://doi.org/10.1021/acs.joc.5b01396

    Article  CAS  PubMed  Google Scholar 

  40. Dar’in D, Krasavin M (2016) The Chan–Evans–Lam N-arylation of 2-imidazolines. J Org Chem 81:12514–12519. https://doi.org/10.1021/acs.joc.6b02404

    Article  CAS  PubMed  Google Scholar 

  41. Mandal PS, Kumar AV (2016) Copper-catalyzed imino C–N bond formation with aryl boronic acids under aerobic conditions. Synlett 27:1408–1412. https://doi.org/10.1055/s-0035-1561382

    Article  CAS  Google Scholar 

  42. Jiang Y, Huang S (2014) A microwave-assisted three-component synthesis of arylaminomethyl acetylenes: a facile access to terminal alkynes. Synlett 25:407–410. https://doi.org/10.1055/s-0033-1340331

    Article  CAS  Google Scholar 

  43. Feng Y, Holte D, Zoller J, Umemiya S, Simke LR, Baran PS (2015) Total synthesis of verruculogen and fumitremorgin a enabled by ligand-controlled C–H borylation. J Am Chem Soc 137:10160–10163. https://doi.org/10.1021/jacs.5b07154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar KA, Kannaboina P, Jaladanki CK, Bharatam PV, Das P (2016) Copper-catalyzed N-arylation of tautomerizable heterocycles with boronic acids and its application to synthesis of oxygenated carbazoles. Chem Sel 1:601–607. https://doi.org/10.1002/slct.201600147

    Article  CAS  Google Scholar 

  45. Bohmann RA, Bolm C (2013) Copper-catalyzed C–N cross-coupling of sulfondiimines with boronic acids. Org Lett 15:4277–4279. https://doi.org/10.1021/ol401642n

    Article  CAS  PubMed  Google Scholar 

  46. Kontokosta D, Mueller DS, Wang HY, Anderson LL (2013) Preparation of α-imino aldehydes by [1,3]-rearrangements of O-alkenyl oximes. Org Lett 15:4830–4833. https://doi.org/10.1021/ol402237w

    Article  CAS  PubMed  Google Scholar 

  47. Kroc MA, Patil A, Carlos A, Ballantine J, Aguilar S, Mo DL, Wang HY, Mueller DS, Wink DJ, Anderson LL (2017) Synthesis of α-oxygenated ketones and substituted catechols via the rearrangement of N-enoxy- and N-aryloxyphthalimides. Tetrahedron 73:4125–4137. https://doi.org/10.1016/j.tet.2017.01.061

    Article  CAS  Google Scholar 

  48. Moon SY, Kim UB, Sung DB, Kim WS (2015) A synthetic approach to N-aryl carbamates via copper-catalyzed Chan–Lam coupling at room temperature. J Org Chem 80:1856–1865. https://doi.org/10.1021/jo502828

    Article  CAS  PubMed  Google Scholar 

  49. Huang F, Quach TD, Batey RA (2013) Copper-catalyzed non decarboxylative cross coupling of alkenyltrifluoroborate salts with carboxylic acids or carboxylates: synthesis of enol esters. Org Lett 15:3150–3153. https://doi.org/10.1021/ol4013712

    Article  CAS  PubMed  Google Scholar 

  50. Jacobson CE, Martinez-Muñoz N, Gorin DJ (2015) Aerobic copper-catalyzed O-methylation with methylboronic acid. J Org Chem 80:7305–7310. https://doi.org/10.1021/acs.joc.5b01077

    Article  CAS  PubMed  Google Scholar 

  51. Sawant SD, Srinivas M, Kumar KA, Reddy GL, Singh PP, Singh B, Sharma AK, Sharma PR, Vishwakarma RA (2013) Ligand-free C–N bond formation in aqueous medium using a reusable Cu–Mn bimetallic catalyst. Tetrahedron Lett 54:5351–5354

    Article  CAS  Google Scholar 

  52. Singh DP, Raghuvanshi DS, Singh KN, Singh VP (2013) Synthesis, characterization and catalytic application of some novel binuclear transition metal complexes of bis-(2-acetylthiophene) oxaloyldihydrazone for C–N bond formation. J Mol Catal A Chem 379:21–29. https://doi.org/10.1016/j.molcata.2013.07.011

    Article  CAS  Google Scholar 

  53. Zhou Y, Xie Y, Yang L, Xie P, Huang H (2013) Copper-catalyzed aerobic oxidative amination of arylboronic acid with aminal under base-free conditions. Tetrahedron Lett 54:2713–2716. https://doi.org/10.1016/j.tetlet.2013.03.058

    Article  CAS  Google Scholar 

  54. Debreczeni N, Fodor A, Hell Z (2014) Coupling of boronic acids with amines in the presence of a supported copper catalyst. Catal Lett 144:1547–1551. https://doi.org/10.1007/s10562-014-1301-x

    Article  CAS  Google Scholar 

  55. Gogoi A, Sarmah G, Dewan A, Bora U (2014) Unique copper–salen complex: an efficient catalyst for N-arylations of anilines and imidazoles at room temperature. Tetrahedron Lett 55:31–35. https://doi.org/10.1016/j.tetlet.2013.10.084

    Article  CAS  Google Scholar 

  56. Islam SM, Salam N, Mondal P, Roy AS, Ghosh K, Tuhina K (2014) A highly active reusable polymer anchored copper catalyst for C–O, C–N and C–S cross coupling reactions. J Mol Catal A Chem 387:7–19. https://doi.org/10.1016/j.molcata.2014.02.007

    Article  CAS  Google Scholar 

  57. Islam SM, Dey RC, Roy AS, Paul S, Mondal S (2014) Open-air N-arylation of N–H heterocycles with arylboronic acids catalyzed by copper(II) schiff base complexes. Transit Met Chem 39:961–969. https://doi.org/10.1007/s11243-014-9881-2

    Article  CAS  Google Scholar 

  58. Liu CY, Li Y, Ding JY, Dong DW, Han FS (2014) The development of copper-catalyzed aerobic oxidative coupling of H-tetrazoles with boronic acids and an insight into the reaction mechanism. Chem Eur J 20:2373–2381

    Article  CAS  PubMed  Google Scholar 

  59. Moon SY, Nam J, Rathwell K, Kim WS (2014) Copper-catalyzed Chan–Lam coupling between sulfonyl azides and boronic acids at room temperature. Org Lett 16:338–341. https://doi.org/10.1021/ol403717f

    Article  CAS  PubMed  Google Scholar 

  60. Puthiaraj P, Pitchumani K (2014) Triazine-based mesoporous covalent imine polymers as solid supports for copper-mediated Chan–Lam cross-coupling N-arylation reactions. Chem Eur J 20:8761–8770. https://doi.org/10.1002/chem.201402365

    Article  CAS  PubMed  Google Scholar 

  61. Shi J, Li F, Li H, Wang F, Yu H, Ren Z, Zhang W, Lang JP (2014) Nickel(II) thiolates derived from transmetallation reaction of [Zn(Tab)4](PF6)2 with Ni(II) ions and their catalytic activity toward the C\N coupling reactions. Inorg Chem Commun 46:159–162. https://doi.org/10.1016/j.inoche.2014.05.035

    Article  CAS  Google Scholar 

  62. Anuradha Kumari S, Pathak DD (2015) Synthesis and development of chitosan anchored Copper(II) Schiff base complexes as heterogeneous catalysts for N-arylation of amines. Tetrahedron Lett 56:4135–4142. https://doi.org/10.1016/j.tetlet.2015.05.049

    Article  CAS  Google Scholar 

  63. Keesara S (2015) N-(Pyridin-2-yl)benzamide: efficient ligand for the nickel catalyzed Chan–Lam cross-coupling reaction. Tetrahedron Lett 56:6685–6688. https://doi.org/10.1016/j.tetlet.2015.10.047

    Article  CAS  Google Scholar 

  64. Koley S, Chowdhury S, Chanda T, Ramulu BJ, Anand N, Singh MS (2015) Ligand- and Base-free cuii-mediated selective S-arylation of α-enolic dithioesters by Chan–Lam coupling at room temperature. Eur J Org Chem 2:409–416. https://doi.org/10.1002/ejoc.201403171

    Article  CAS  Google Scholar 

  65. Wang B, Yang P, Ge ZW, Li CP (2015) A porous metal–organic framework as active catalyst for multiple C–N/C–C bond formation reactions. Inorg Chem Commun 61:13–15. https://doi.org/10.1016/j.inoche.2015.08.010

    Article  CAS  Google Scholar 

  66. Yoo WJ, Tsukamoto T, Kobayashi S (2015) Visible-light-mediated Chan–Lam coupling reactions of aryl boronic acids and aniline derivatives. Angew Chem Int Ed 54:6687–6690

    Article  Google Scholar 

  67. Bao J, Tranmer GK (2016) The solid copper-mediated C–N cross-coupling of phenylboronic acids under continuous flow conditions. Tetrahedron Lett 57:654–657. https://doi.org/10.1016/j.tetlet.2015.12.107

    Article  CAS  Google Scholar 

  68. Lin Y, Cai M, Fang Z, Zhao H (2016) A highly efficient heterogeneous copper-catalyzed Chan–Lam coupling between thiols and arylboronic acids leading to diaryl sulfides under mild conditions. Tetrahedron 72:3335–3343. https://doi.org/10.1016/j.tet.2016.04.063

    Article  CAS  Google Scholar 

  69. Mori-Quiroz LM, Shimkin KW, Rezazadeh S, Kozlowski RA, Watson DA (2016) Copper-catalyzed amidation of primary and secondary alkyl boronic esters. Chem Eur J 22:15654–15658

    Article  CAS  PubMed  Google Scholar 

  70. Vantourout JC, Law RP, Isidro-Llobet A, Atkinson SJ, Watson AJ (2016) Chan–Evans–Lam amination of boronic acid pinacol (BPin) esters: overcoming the aryl amine problem. Org Chem 81:3942–3950. https://doi.org/10.1021/acs.joc.6b00466

    Article  CAS  Google Scholar 

  71. Xue JY, Li JC, Li HX, Li HY, Lang JP (2016) Chan–Lam cross coupling reactions promoted by anionic copper(I)/iodide species with cationic methyl-((pyridinyl)-pyrazolyl)pyridin-1-ium. Tetrahedron 72:7014–7020. https://doi.org/10.1016/j.tet.2016.09.032

    Article  CAS  Google Scholar 

  72. Azam M, Dwivedi S, Al-Resayes SI, Adil SF, Islam MS, Trzesowska-Kruszynska A, Kruszynski R, Lee DU (2017) Cu(II) salen complex with propylene linkage: an efficient catalyst in the formation of CeX bonds (X = N, O, S) and biological investigations. J Mol Struct 1130:122–127

    Article  CAS  Google Scholar 

  73. Duparc HV, Schaper F (2017) Sulfonato-diketimine copper(II) complexes: synthesis and application as catalysts in Chan–Evans–Lam couplings. Organometallics 36:3053–3060. https://doi.org/10.1021/acs.organomet.7b00397

    Article  CAS  Google Scholar 

  74. Guan C, Feng Y, Zou G, Tang J (2017) Base-assisted, copper-catalyzed N-arylation of (benz)imidazoles and amines with diarylborinic acids. Tetrahedron 73:6906–6913. https://doi.org/10.1016/j.tet.2017.10.043

    Article  CAS  Google Scholar 

  75. Harris MR, Li Q, Lian Y, Xiao J, Londregan AT (2017) Construction of 1-heteroaryl-3-azabicyclo[3.1.0]hexanes by sp3-sp2 Suzuki–Miyaura and Chan–Evans–Lam coupling reactions of tertiary trifluoroborates. Org Lett 19:2450–2453. https://doi.org/10.1021/acs.orglett.7b01097

    Article  CAS  PubMed  Google Scholar 

  76. Sharghi H, Sepehri S, Aberi M (2017) Cu(II) complex of pyridine-based polydentate as a novel, efficient, and highly reusable catalyst in C–N bond-forming reaction. Mol Divers 21:855–864

    Article  CAS  PubMed  Google Scholar 

  77. Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJ (2017) Spectroscopic studies of the Chan–Lam amination: a mechanism-inspired solution to boronic ester reactivity. J Am Chem Soc 139:4769–4779. https://doi.org/10.1021/jacs.6b12800

    Article  CAS  PubMed  Google Scholar 

  78. Zhang K, Xu XH, Qing FL (2017) Copper-catalyzed oxidative trifluoroethoxylation of aryl boronic acids with CF3CH2OH. J Fluorine Chem 196:24–31. https://doi.org/10.1016/j.jfluchem.2016.07.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Fawad Zahoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, I., Zahoor, A.F., Rasool, N. et al. Synthetic applications and methodology development of Chan–Lam coupling: a review. Mol Divers 23, 215–259 (2019). https://doi.org/10.1007/s11030-018-9870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9870-z

Keywords

Navigation