Skip to main content

Advertisement

Log in

New insights into the selective inhibition of the β-carbonic anhydrases of pathogenic bacteria Burkholderia pseudomallei and Francisella tularensis: a proteochemometrics study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Nowadays, antibiotic resistance has turned into one of the most important worldwide health problems. Biological end point of critical enzymes induced by potent inhibitors is recently being considered as a highly effective and popular strategy to defeat antibiotic-resistant pathogens. For instance, the simple but critical β-carbonic anhydrase has recently been in the center of attention for anti-pathogen drug discoveries. However, no β-carbonic anhydrase selective inhibitor has yet been developed. Available β-carbonic anhydrase inhibitors are also highly potent with regard to human carbonic anhydrases, leading to severe inevitable side effects in case of usage. Therefore, developing novel inhibitors with high selectivity against pathogenic β-carbonic anhydrases is of great essence. Herein, for the first time, we have conducted a proteochemometric study to explore the structural and the chemical aspects of the interactions governed by bacterial β-carbonic anhydrases and their inhibitors. We have found valuable information which can lead to designing novel inhibitors with better selectivity for bacterial β-carbonic anhydrases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Capasso C, Supuran CT (2016) An overview of the carbonic anhydrases from two pathogens of the oral cavity: streptococcus mutans and Porphyromonas gingivalis. Curr Top Med Chem 16:2359–2368

    Article  CAS  PubMed  Google Scholar 

  2. Ozensoy Guler O, Capasso C, Supuran CT (2016) A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem 31:689–694

    CAS  PubMed  Google Scholar 

  3. Capasso C, Supuran CT (2015) Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets 19:1689–1704

    Article  CAS  PubMed  Google Scholar 

  4. Del Prete S, De Luca V, De Simone G, Supuran CT, Capasso C (2016) Cloning, expression and purification of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. J Enzyme Inhib Med Chem 31:54–59

    Article  CAS  PubMed  Google Scholar 

  5. Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen SA, Capasso C et al (2014) Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—The η-carbonic anhydrases. Bioorg Med Chem Lett 24:4389–4396

    Article  CAS  PubMed  Google Scholar 

  6. Supuran CT, Capasso C (2015) The η-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin Ther Targets 19:551–563

    Article  CAS  PubMed  Google Scholar 

  7. Supuran CT (2013) Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO2 capture. Med Chem 28:229–230

    Google Scholar 

  8. Bejaoui M, Pantazi E, De Luca V, Panisello A, Folch-Puy E, Hotter G et al (2015) Carbonic anhydrase protects fatty liver grafts against ischemic reperfusion damage. PLoS One 10:1–16

    Google Scholar 

  9. Del Prete S, Vullo D, Osman SM, AlOthman Z, Supuran CT (2017) Sulfonamide inhibition profiles of the β-carbonic anhydrase from the pathogenic bacterium Francisella tularensis responsible of the febrile illness tularemia. Bioorg Med Chem 25:3555–3561

    Article  CAS  PubMed  Google Scholar 

  10. Vullo D, Del Prete S, Di Fonzo P, Carginale V, Donald WA, Supuran CT et al (2017) Comparison of the sulfonamide inhibition profiles of the β-and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. Molecules 22:421–435

    Article  CAS  PubMed Central  Google Scholar 

  11. Gillard JJ, Laws TR, Lythe G, Molina-París C (2014) Modeling early events in Francisella tularensis pathogenesis. Front Cell Infect Microbiol 11:169–178

    Google Scholar 

  12. Saslaw S, Eigelsbach HT, Prior JA, Wilson HE, Carhart S (1961) Tularemia vaccine study: II. Respiratory challenge. Arch Intern Med 107:702–714

    Article  CAS  PubMed  Google Scholar 

  13. Celli J, Zahrt TC (2013) Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 3:a010314–a010327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oyston PC (2008) Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol 57:921–930

    Article  PubMed  Google Scholar 

  15. Conlan JW (2011) Francisella tularensis: a red-blooded pathogen. J Infect Dis 204:6–8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Currie BJ (2010) Burkholderia pseudomallei and Burkholderia mallei: melioidosis and glanders. In: Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases. Churchill Livingstone Elsevier, Philadelphia, pp 2869–2885

  17. Stephens DP, Thomas JH, Ward LM, Currie BJ (2016) Melioidosis causing critical illness: a review of 24 years of experience from the Royal Darwin Hospital ICU. Crit Care Med 44:1500–1505

    Article  PubMed  Google Scholar 

  18. Cheng AC, Limmathurotsakul D, Chierakul W, Getchalarat N, Wuthiekanun V, Stephens DP et al (2007) A randomized controlled trial of granulocyte colonystimulating factor for the treatment of severe sepsis due to melioidosis in Thailand. Clin Infect Dis 45:308–314

    Article  CAS  PubMed  Google Scholar 

  19. Prusis P, Muceniece R, Andersson P, Post C, Lundstedt T, Wikberg JE (2001) PLS modeling of chimeric MS04/MSH-peptide and MC 1/MC 3-receptor interactions reveals a novel method for the analysis of ligand–receptor interactions. Biochim Biophys Acta 1544:350–357

    Article  CAS  PubMed  Google Scholar 

  20. Lapinsh M, Prusis P, Lundstedt T, Wikberg JE (2002) Proteochemometrics modeling of the interaction of amine G-protein coupled receptors with a diverse set of ligands. Mol Pharmacol 61:1465–1475

    Article  CAS  PubMed  Google Scholar 

  21. Lapinsh M, Prusis P, Uhlén S, Wikberg JE (2005) Improved approach for proteochemometrics modeling: application to organic compound-amine G protein-coupled receptor interactions. Bioinformatics 21:4289–4296

    Article  CAS  PubMed  Google Scholar 

  22. Prusis P, Lapins M, Yahorava S, Petrovska R, Niyomrattanakit P, Katzenmeier G et al (2008) Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorg Med Chem 16:9369–9377

    Article  CAS  PubMed  Google Scholar 

  23. Lapins M, Eklund M, Spjuth O, Prusis P, Wikberg JE (2008) Proteochemometric modeling of HIV protease susceptibility. BMC Bioinf 9:181–191

    Article  CAS  Google Scholar 

  24. Lapins M, Wikberg JE (2010) Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques. BMC Bioinf 11:339–353

    Article  CAS  Google Scholar 

  25. Subramanian V, Prusis P, Pietilä LO, Xhaard H, Wohlfahrt G (2013) Visually interpretable models of kinase selectivity related features derived from field-based proteochemometrics. J Chem Inf Model 53:3021–3030

    Article  CAS  PubMed  Google Scholar 

  26. Rasti B, Karimi-Jafari MH, Ghasemi JB (2016) Quantitative Characterization of the Interaction Space of the Mammalian Carbonic Anhydrase Isoforms I, II, VII, IX, XII, and XIV and their Inhibitors. Using the Proteochemometric Approach. Chem Biol Drug Des 88:341–353

    Article  CAS  PubMed  Google Scholar 

  27. Rasti B, Namazi M, Karimi-Jafari MH, Ghasemi JB (2017) Proteochemometric modeling of the interaction space of carbonic anhydrase and its inhibitors: an assessment of structure-based and sequence-based descriptors. Mol Info 36:1600102–1600113

    Article  CAS  Google Scholar 

  28. Rasti B, Entezari Heravi Y (2018) Probing the chemical interaction space governed by 4-aminosubstituted benzenesulfonamides and carbonic anhydrase isoforms. Res Pharm Sci 13:192–204

    Article  PubMed  PubMed Central  Google Scholar 

  29. Simeon S, Spjuth O, Lapins M, Nabu S, Anuwongcharoen N, Prachayasittikul V et al (2016) Origin of aromatase inhibitory activity via proteochemometric modeling. PeerJ 4:e1979–e2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rasti B, Shahangian SS (2018) Proteochemometric modeling of the origin of thymidylate synthase inhibition. Chem Biol Drug Des 91:1007–1016

    Article  CAS  PubMed  Google Scholar 

  31. Rasti B, Schaduangrat N, Shahangian SS, Nantasenamat C (2017) Exploring the origin of phosphodiesterase inhibition via proteochemometric modeling. RSC Adv 7:28056–28068

    Article  CAS  Google Scholar 

  32. Version, S., 6.9, Tripos Associates, St. Louis, Mo, 2001

  33. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243

    Article  CAS  PubMed  Google Scholar 

  34. Duran A, Martinez GC, Pastor M (2008) Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields. J Chem Inf Model 48:1813–1823

    Article  CAS  PubMed  Google Scholar 

  35. Wold S, Jonsson J, Sjörström M, Sandberg M, Rännar S (1993) DNA and peptide sequences and chemical processes multivariately modelled by principal component analysis and partial least-squares projections to latent structures. Ana Chim Acta 277:239–253

    Article  CAS  Google Scholar 

  36. Hellberg S, Sjoestroem M, Skagerberg B, Wold S (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30:1126–1135

    Article  CAS  PubMed  Google Scholar 

  37. Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491

    Article  CAS  PubMed  Google Scholar 

  38. Beasley D, Bull DR, Martin RR (1993) An overview of genetic algorithms: part 1, fundamentals. University computing 15:56–69

    Google Scholar 

  39. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866

    Article  CAS  Google Scholar 

  40. Hou TJ, Wang JM, Liao N, Xu XJ (1999) Applications of genetic algorithms on the structure—activity relationship analysis of some cinnamamides. J Chem Inf Comput Sci 39:775–781

    Article  CAS  PubMed  Google Scholar 

  41. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137–148

    Article  Google Scholar 

  42. Gramatica P (2007) Principles of QSAR models validation: internal and external. Mol Inf 26:694–701

    CAS  Google Scholar 

  43. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Mol Inf 22:69–77

    CAS  Google Scholar 

  44. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs. Environ Health Perspect 111:1361–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alhanout K, M Rolain J, M Brunel J (2010) Squalamine as an example of a new potent antimicrobial agents class: a critical review. Curr Med Chem 17:3909–3917

    Article  CAS  PubMed  Google Scholar 

  46. Gaynor M, Mankin AS (2003) Macrolide antibiotics: binding site, mechanism of action, resistance. Curr Top Med Chem 3:949–960

    Article  CAS  PubMed  Google Scholar 

  47. Khelaifia S, Drancourt M (2012) Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin Microbiol Infect 18:841–848

    Article  CAS  PubMed  Google Scholar 

  48. Supuran CT (2017) Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov 12:61–88

    Article  CAS  PubMed  Google Scholar 

  49. Supuran CT (2016) Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol 12:423–431

    Article  CAS  PubMed  Google Scholar 

  50. Capasso C, Supuran CT (2015) An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr Med Chem 22:2130–2139

    Article  CAS  PubMed  Google Scholar 

  51. Capasso C, Supuran CT (2014) Sulfa and trimethoprim-like drugs–antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzyme Inhib Med Chem 29:379–387

    Article  CAS  PubMed  Google Scholar 

  52. Capasso C, Supuran CT (2013) Anti-infective carbonic anhydrase inhibitors: a patent and literature review. Expert Opin Ther Pat 23:693–704

    Article  CAS  PubMed  Google Scholar 

  53. Nishimori I, Onishi S, Takeuchi H, Supuran CT (2008) The α and β classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr Pharm Des 14:622–630

    Article  CAS  PubMed  Google Scholar 

  54. Morishita S, Nishimori I, Minakuchi T, Onishi S, Takeuchi H, Sugiura T et al (2008) Cloning, polymorphism, and inhibition of β-carbonic anhydrase of Helicobacter pylori. J Gastroenterol 43:849–857

    Article  CAS  PubMed  Google Scholar 

  55. Abuaita BH, Withey JH (2009) Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun 77:4111–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Rasti.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CSV 59 kb)

Supplementary material 2 (CSV 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasti, B., Mazraedoost, S., Panahi, H. et al. New insights into the selective inhibition of the β-carbonic anhydrases of pathogenic bacteria Burkholderia pseudomallei and Francisella tularensis: a proteochemometrics study. Mol Divers 23, 263–273 (2019). https://doi.org/10.1007/s11030-018-9869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9869-5

Keywords

Navigation