Skip to main content
Log in

Regioselective formation of 1,2,4-triazoles by the reaction of amidrazones in the presence of diethyl azodicarboxylate and catalyzed by triethylamine

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A general method for the synthesis of 1,3,5-trisubstituted 1,2,4-triazoles has been developed from reaction of amidrazones with ethyl azodicarboxylate and triethylamine (Mitsunobu reagent) in EtOH. This highly regioselective one-pot process provides rapid access to highly diverse triazoles. The reaction was explained, based on Mitsunobu reagent oxidizing ethanol to acetaldehyde, which would then react with amidrazones to give the substituted 3-methyltriazoles. A [2 + 3] cycloaddition reaction between two oxidized forms of amidrazones produced the second type of triazoles. X-ray structure analyses proved the structure of each type of product.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Curtis ADM, Jennings N (2008) 1,2,4-triazoles. Compr Heterocycl Chem III 5:159–209. https://doi.org/10.1016/B978-008044992-0.00502-2

    Article  Google Scholar 

  2. Zhou C-H, Wang Y (2012) Recent researches in triazole compounds as medicinal drugs. Curr Med Chem 19:239–280. https://doi.org/10.2174/092986712803414213

    Article  CAS  PubMed  Google Scholar 

  3. Shalini K, Kumar N, Drabu S, Sharma PK (2011) Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem 7:668–677. https://doi.org/10.3762/bjoc.7.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turan-Zitouni G, Kaplancikli ZA, Yildiz MT, Chevallet P, Kaya D (2005) Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1,2,4-triazole derivatives. Eur J Med Chem 40:607–613. https://doi.org/10.1016/j.ejmech.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  5. Walczak K, Gondela A, Suwinski J (2004) Synthesis and anti-tuberculosis activity of N-aryl-C- nitroazoles. Eur J Med Chem 39:849–853. https://doi.org/10.1016/j.ejmech.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  6. Holla BS, Poojary KN, Rao BS, Shivananda MK (2002) New bis-aminomercaptotriazoles and bis- triazolothiadiazoles as possible anticancer agents. Eur J Med Chem 37:511–517. https://doi.org/10.1016/S0223-5234(02)01358-2

    Article  PubMed  Google Scholar 

  7. Almasirad A, Tabatabai SA, Faizi M, Kebriaeezadeh A, Mehrabi N, Dalvandi A, Shafiee A (2004) Synthesis and anticonvulsant activity of new 2-substituted-5-[2-(2-fluorophenoxy)phenyl]-1,3,4- oxadiazoles and 1,2,4-triazoles. Bioorg Med Chem Lett 14:6057–6059. https://doi.org/10.1016/j.bmcl.2004.09.072

    Article  CAS  PubMed  Google Scholar 

  8. Mhasalkar MY, Shah MH, Nikam ST, Ananthanarayanan KG, Deliwala CV (1970) 4-Alkyl-5-aryl-4H-1,2,4-triazole-3-thiols as hypoglycemic agents. J Med Chem 13:672–674. https://doi.org/10.1021/jm00298a021

    Article  CAS  PubMed  Google Scholar 

  9. Amir M, Shikha K (2004) Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino)phenyl]acetic acid derivatives. Eur J Med Chem 39:535–545. https://doi.org/10.1016/j.ejmech.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  10. Mitsunobu O, Yamada Y (1967) Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts. Bull Chem Soc Jpn 40:2380–2382. https://doi.org/10.1246/bcsj.40.2380

    Article  CAS  Google Scholar 

  11. Mitsunobu O (1981) The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1981:1–28. https://doi.org/10.1055/s-1981-29317

    Article  Google Scholar 

  12. Aly AA, Ramadan M, Abd El-Aziz M, Bräse S, Brown AB, Fathy HM, Nieger M (2017) Regioselective synthesis of 5-aminopyrazoles from reactions of amidrazones with activated nitriles: NMR investigation and x-ray structural analysis. Chem Pap 71:1409–1417. https://doi.org/10.1007/s11696-017-0131-x

    Article  CAS  Google Scholar 

  13. Aly AA, Ramadan M, Abd El-Aziz M, Bräse S, Brown AB, Fathy HM (2017) Selectivity of amidrazones towards activated nitriles—synthesis of new pyrazoles and NMR investigation. Arkivoc. https://doi.org/10.24820/ark.5550190.p009.877

    Article  Google Scholar 

  14. Aly AA, Hassan AA, Bräse S, Gomaa MA-M, Nemr FM (2017) Reaction of amidrazones with diaminomaleonitrile: synthesis of 4-amino-5-iminopyrazoles. J Heterocycl Chem 54:480–483. https://doi.org/10.1002/jhet.2607

    Article  CAS  Google Scholar 

  15. Aly AA, Hassan AA, Gomaa MA-M, Bräse S, Nemr FM (2017) Reaction of amidrazones with phthaloyl chloride—synthesis of 1,2,4-triazolium salts (part I). J Heterocycl Chem 54:775–779. https://doi.org/10.1002/jhet.2643

    Article  CAS  Google Scholar 

  16. Aly AA, Gomaa MAM, NourEl- Din AM, Fahmi MS (2006) Amidrazones in the synthesis of 1H-1,2,4-triazoles. Z Naturforsch 61b:1239–1242. https://doi.org/10.1515/znb-2006-1009

    Article  Google Scholar 

  17. Aly AA, Brown AB, Shawky AM (2017) One-pot reaction of amidrazones, phthaloyl chloride, and triethyl amine: synthesis of (1′,2′,4′-triazole)-2-benzoic acid. J Heterocycl Chem 54:2375–2379. https://doi.org/10.1002/jhet.2829

    Article  CAS  Google Scholar 

  18. Aly AA, Shaker RM (2005) 5-Benzyl-1H-tetrazoles from the reaction of 1-aryl-5-methyl-1H-tetrazoles with 1,2-dehydrobenzene. Tetrahedron Lett 46:2679–2682. https://doi.org/10.1016/j.tetlet.2005.02.072

    Article  CAS  Google Scholar 

  19. Aly AA, Ramadan M, Abd Al-Aziz M, Fathy HM, Bräse S, Brown AB, Nieger M (2016) Reaction of amidrazones with 2,3-diphenylcyclopropenone: synthesis of 3-(aryl)-2,5,6-triphenylpyrimidin-4(3H)-ones. J Chem Res 40:637–639. https://doi.org/10.3184/174751916x14743924

    Article  CAS  Google Scholar 

  20. Aly AA, Ramadan M, Morsy NM, Elkanzi NAA (2017) Inclusion of carbonyl groups of benzo[b]thiophene-2,5-dione into amidrazones: synthesis of 1,2,4-triazine-5,6-diones. J Heterocycl Chem 54:2067–2070. https://doi.org/10.1002/jhet.2805

    Article  CAS  Google Scholar 

  21. Aly AA, Gomaa MAM, NourEl-Din AM, Fahmy MS (2007) Reactions of amidrazones with 1,4-quinones. Arkivoc 16:41–50. https://doi.org/10.3998/ark.5550190.0008.g04

    Article  Google Scholar 

  22. Aly AA, NourEl-Din AM, Gomaa MA-M, Fahmy MS (2008) Rapid and facile synthesis of 4-aryl-5-imino-3-phenyl-1H-naphtho[2,3-f]-1,2,4-triazepine-6,11-diones via the reaction of amidrazones with dicyanonaphthoquinone. Z Naturforschung 63B:223–228. https://doi.org/10.1515/znb-2008-0217

    Article  Google Scholar 

  23. Aly AA, Ishak EA, Ramadan M, Elkanzi NAA, El-Reedy AAM (2017) Amidrazones and 2-acetylcyclopentanone in the synthesis of cyclopenta[e][1,3,4]oxadiazepines. J Heterocycl Chem 54:1652–1655. https://doi.org/10.1002/jhet.2727

    Article  CAS  Google Scholar 

  24. Nájera C, Sansano JM, Yus M (2015) 1,3-Dipolar cycloadditions of azomethine imines. Org Biomol Chem 13:8596–8636. https://doi.org/10.1039/C5OB01086A

    Article  CAS  PubMed  Google Scholar 

  25. Yoneda F, Suzuki K, Nitta Y (1966) A new hydrogen-abstracting reaction with diethyl azodicarboxylate. J Am Chem Soc 88:2328–2829. https://doi.org/10.1021/ja00962a05

    Article  CAS  Google Scholar 

  26. Hayashi M, Shibuya M, Iwabuchi Y (2011) Oxidation of alcohols to carbonyl compounds with diisopropyl azodicarboxylate catalyzed by nitroxyl radicals. J Org Chem 77:3005–3009. https://doi.org/10.1021/jo300088b

    Article  CAS  Google Scholar 

  27. Cao HT, Grée R (2009) DEAD-(cat)ZnBr2, an efficient system for the oxidation of alcohols to carbonyl compounds. Tetrahedron Lett 50:1493–1494. https://doi.org/10.1016/j.tetlet.2009.01.080

    Article  CAS  Google Scholar 

  28. Shi M, Zhao G-L (2004) Aza-Baylis–Hillman reactions of diisopropyl azodicarboxylate or diethyl azodicarboxylate with acrylates and acrylonitrile. Tetrahedron 60:2083–2089. https://doi.org/10.1016/j.tet.2003.12.059

    Article  CAS  Google Scholar 

  29. Tsunoda T, Otsuka J, Yamamiya Y, Ito S (1994) N,N,N′,N′-Tetramethylazodicarboxamide (TMAD), a new versatile reagent for Mitsunobu reaction. Its application to synthesis of secondary amines. Chem Lett 23:539–542. https://doi.org/10.1246/cl.1994.539

    Article  Google Scholar 

  30. Tsunoda T, Kawamura Y, Uemoto K, Ito S (1998) Mitsunobu type C-N bond formation with 4,7-dimethyl-3,5,7-hexahydro-1,2,4,7-tetrazocin-3,8-dione (DHTD), a new cyclic azodicarboxamide. Heterocycles 47:177–179. https://doi.org/10.3987/com-97-s(n)78

    Article  CAS  Google Scholar 

  31. Sakamoto I, Kaku H, Tsunoda T (2003) Preparation of (cyanomethylene)trimethylphosphorane as a new Mitsunobu-type reagent. Chem Pharm Bull 51:474–476. https://doi.org/10.1248/cpb.51.474

    Article  CAS  PubMed  Google Scholar 

  32. Hughes DL (2004) The Mitsunobu reaction. Org React (NY) 42:335–656. https://doi.org/10.1002/0471264180.or042.02

    Article  CAS  Google Scholar 

  33. Jenkins ID, Mitsunobu O (2001) Triphenylphosphine-diethyl azodicarboxylate. In: Paquette LA (ed) Electronic encyclopedia of reagents for organic synthesis. Wiley, New York. https://doi.org/10.1002/047084289x.rt372

    Chapter  Google Scholar 

  34. Müller D, Beckert R, Görls H (2001) Bis-amidines as useful building blocks for heterofulvenes and -fulvalenes. Synthesis 2001:601–606. https://doi.org/10.1055/s-2001-12366

    Article  Google Scholar 

  35. Siddaiah V, Basha GM, Srinuvasarao R, Yadav SK (2011) HClO4-SiO2: an efficient reusable catalyst for the synthesis of 3,4,5-trisubstituted 1,2,4-triazoles under solvent-free conditions. Catal Lett 141:1511–1520. https://doi.org/10.1007/s10562-011-0665-4

    Article  CAS  Google Scholar 

  36. Mangarao N, Mahaboob Basha G, Ramu T, Srinuvasarao R, Prasanthi S, Siddaiah V (2014) Brønsted acid-catalyzed simple and efficient synthesis of 1,2,4-triazoles and 1,2,4-oxadiazoles using 2,2,2-trichloroethyl imidates in PEG. Tetrahedron Lett 55:177–179. https://doi.org/10.1016/j.tetlet.2013.10.147

    Article  CAS  Google Scholar 

  37. Ito S, Tanaka Y, Kakehi A, Miyazawa H (1977) The reaction of N-(phenylsulfonyl)-benzohydrazonoyl chloride with N-substituted benzamidines, with benzimidates, and with 2-aminopyridines. Bull Chem Soc Jpn 50:2969–2972. https://doi.org/10.1246/bcsj.50.2969

    Article  CAS  Google Scholar 

  38. Nakka M, Tadikonda R, Nakka S, Vidavalur S (2016) Synthesis of 1,2,4-triazoles, N-fused 1,2,4-triazoles and 1,2,4-oxadiazoles via molybdenum hexacarbonyl-mediated carbonylation of aryl iodides. Adv Synth Catal 358:520–525. https://doi.org/10.1002/adsc.201500703

    Article  CAS  Google Scholar 

  39. Sheldrick GM (2015) SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  40. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank 3-MET Society, Karlsruhe Institute of Technology, Karlsruhe, Germany, for financial support to Prof Ashraf A. Aly enabling him to carry out analyses in the aforesaid Institute. Purchase of the NMR spectrometer at Florida Institute of Technology was assisted by the US National Science Foundation (CHE 03-42251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf A. Aly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.A., Hassan, A.A., Mohamed, N.K. et al. Regioselective formation of 1,2,4-triazoles by the reaction of amidrazones in the presence of diethyl azodicarboxylate and catalyzed by triethylamine. Mol Divers 23, 195–203 (2019). https://doi.org/10.1007/s11030-018-9868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9868-6

Keywords

Navigation