Skip to main content
Log in

Amino acids and peptides as reactants in multicomponent reactions: modification of peptides with heterocycle backbones through combinatorial chemistry

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this study, amino acids and peptides were used as reactants in a Hantzsch multicomponent reaction in order to synthesize new structurally diverse molecules containing these synthons. As well, an applicable strategy for modification of these natural molecules with heterocycle backbones such as pyrimidine, xanthene and acridine is introduced. Using this method, a set of new amino acid- and peptide-functionalized heterocycles were synthesized in good to excellent yields under mild conditions. Furthermore, carbohydrates were used as substrates in the synthesis of some derivatives. Overall, this methodology allows the possibility of synthesis of large numbers of natural product-based libraries, using amino acids, peptides and carbohydrates through combinatorial chemistry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Small heterocycles in multicomponent reactions. Chem Rev 114:8323–8356. https://doi.org/10.1021/cr400615v

    Article  CAS  PubMed  Google Scholar 

  2. González-López M, Shaw JT (2009) Cyclic anhydrides in formal cycloadditions and multicomponent reactions. Chem Rev 109:164–189. https://doi.org/10.1021/cr8002714

    Article  CAS  PubMed  Google Scholar 

  3. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. https://doi.org/10.1021/cr0505728

    Article  CAS  PubMed  Google Scholar 

  4. Brauch S, van Berkel SS, Westermann B (2013) Higher-order multicomponent reactions: beyond four reactants. Chem Soc Rev 42:4948–4962. https://doi.org/10.1039/c3cs35505e

    Article  CAS  PubMed  Google Scholar 

  5. Gorea RP, Rajput AP (2013) A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug Invent Today 5:148–152. https://doi.org/10.1016/j.dit.2013.05.010

    Article  CAS  Google Scholar 

  6. Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112:3083–3185. https://doi.org/10.1021/cr100233r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Estévez V, Villacampa M, Menéndez JC (2010) Multicomponent reactions for the synthesis of pyrroles. Chem Soc Rev 39:4402–4421. https://doi.org/10.1039/B917644F

    Article  PubMed  Google Scholar 

  8. de Graaff C, Ruijter E, Orru RVA (2012) Recent developments in asymmetric multicomponent reactions. Chem Soc Rev 41:3969–4009. https://doi.org/10.1039/c2cs15361k

    Article  CAS  PubMed  Google Scholar 

  9. Tejedor D, García-Tellado F (2007) Chemo-differentiating ABB′ multicomponent reactions. Privileged building blocks. Chem Soc Rev 36:484–491. https://doi.org/10.1039/B608164A

    Article  CAS  PubMed  Google Scholar 

  10. Touré BB, Hall DG (2005) Multicomponent reactions in the total synthesis of natural products. In: Zhu J, Bienaymé H (eds) multicomponent reactions. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  11. Touré BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486. https://doi.org/10.1021/cr800296p

    Article  CAS  PubMed  Google Scholar 

  12. Koszytkowska-Stawińska M, Buchowicz W (2014) Multicomponent reactions in nucleoside chemistry. Beilstein J Org Chem 10:1706–1731. https://doi.org/10.3762/bjoc.10.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nourisefat M, Panahi F, Khalafi-Nezhad A (2014) Carbohydrates as a reagent in multicomponent reactions: one-pot access to a new library of hydrophilic substituted pyrimidine-fused heterocycles. Org Biomol Chem 12:9419–9426. https://doi.org/10.1039/C4OB01791A

    Article  CAS  PubMed  Google Scholar 

  14. Musawwer Khan M, Yousuf R, Khana S, Shafiullah S (2015) Recent advances in multicomponent reactions involving carbohydrates. RSC Adv 5:57883–57905. https://doi.org/10.1039/C5RA08059B

    Article  Google Scholar 

  15. Voigt B, Linke M, Mahrwald R (2015) Multicomponent cascade reactions of unprotected carbohydrates and amino acids. Org Lett 17:2606–2609. https://doi.org/10.1021/acs.orglett.5b00887

    Article  CAS  PubMed  Google Scholar 

  16. Ricardo MG, Morales FE, Garay H, Reyes O, Vasilev D, WessjohannL A, Rivera DG (2015) Bidirectional macrocyclization of peptides by double multicomponent reactions. Org Biomol Chem 13:438–446. https://doi.org/10.1039/C4OB01915F

    Article  CAS  PubMed  Google Scholar 

  17. Khalafi-Nezhad A, Divar M, Panahi F (2013) Nucleosides as reagents in multicomponent reactions: one-pot synthesis of heterocyclic nucleoside analogues incorporating pyrimidine-fused rings. Tetrahedron Lett 54:220–222. https://doi.org/10.1016/j.tetlet.2012.11.003

    Article  CAS  Google Scholar 

  18. Toobaei Z, Yousefi R, Panahi F, Shahidpour S, Nourisefat M, Doroodmand MM, Khalafi-Nezhad A (2015) Synthesis of novel poly-hydroxyl functionalized acridine derivatives as inhibitors of α-Glucosidase and α-Amylase. Carbohydr Res 411:22–32. https://doi.org/10.1016/j.carres.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  19. Krishna PR, Reddy PS (2008) “diversity oriented synthesis” of functionalized chiral tetrahydropyridines: potential GABA receptor agonists and azasugars from natural amino acids via a sequential Baylis–Hillman reaction and RCM protocol. J Comb Chem 10:426–435. https://doi.org/10.1021/cc700171p

    Article  CAS  PubMed  Google Scholar 

  20. Boyle AL, Woolfson DN (2011) De novo designed peptides for biological applications. Chem Soc Rev 40:4295–4306. https://doi.org/10.1039/C0CS00152J

    Article  CAS  PubMed  Google Scholar 

  21. Koopmanschap G, Ruijter E, OrruR VA (2014) Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J Org Chem 10:544–598. https://doi.org/10.3762/bjoc.10.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kimmerlin T, Seebach D (2005) 100 years of peptide synthesis: ligation methods for peptide and protein synthesis with applications to b-peptide assemblies. J Pept Res 65:229–260. https://doi.org/10.1111/j.1399-3011.2005.00214.x

    Article  CAS  PubMed  Google Scholar 

  23. Sokolova NV, Nenajdenko VG, Sokolov VB, Vinogradova DV, Shevtsova EF, DubovaL G, BachurinS O (2014) Synthesis and biological activity of N-substituted-tetrahydro-γ-carbolines containing peptide residues. Beilstein J Org Chem 10:155–162. https://doi.org/10.3762/bjoc.10.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grauer A, König B (2009) Peptidomimetics—a versatile route to biologically active compounds. Eur J Org Chem 2009:5099–5111. https://doi.org/10.1002/ejoc.200900599

    Article  CAS  Google Scholar 

  25. Cini E, Bifulco G, Menchi G, Rodriquez M, Taddei M (2012) Synthesis of enantiopure 7-substituted azepane-2-carboxylic acids as templates for conformationally constrained peptidomimetics. Eur J Org Chem 2012:2133–2141. https://doi.org/10.1002/ejoc.201101387

    Article  CAS  Google Scholar 

  26. Burgess K (2001) Solid-phase syntheses of β-turn analogues to mimic or disrupt protein–protein interactions. Acc Chem Res 34:826–835. https://doi.org/10.1021/ar9901523

    Article  CAS  PubMed  Google Scholar 

  27. Katritzky AR, Munawar MA, Kovacs J, Khelashvili L (2009) Synthesis of amino acid derivatives of quinolone antibiotics. Org Biomol Chem 7:2359–2362. https://doi.org/10.1039/B900762H

    Article  CAS  PubMed  Google Scholar 

  28. Portlock DE, Naskar D, West L, Ostaszewskic R, Chena JJ (2003) Solid-phase synthesis of five-dimensional libraries via a tandem Petasis–Ugi multi-component condensation reaction. Tetrahedron Lett 44:5121–5124. https://doi.org/10.1016/S0040-4039(03)01119-5

    Article  CAS  Google Scholar 

  29. Wipf P, Wang X (2002) Parallel synthesis of oxazolines and thiazolines by tandem condensation-cyclodehydration of carboxylic acids with amino alcohols and aminothiols. J Comb Chem 4:656–660. https://doi.org/10.1021/cc020041m

    Article  CAS  PubMed  Google Scholar 

  30. Rottger S, Sjoberg PJR, Larhed M (2007) Microwave-enhanced copper-catalyzed N-arylation of free and protected amino acids in water. J Comb Chem 9:204–209. https://doi.org/10.1021/cc060150r

    Article  CAS  PubMed  Google Scholar 

  31. Liu Q, Yang H, Jiang Y, Zhao Y, Fu H (2013) General and efficient copper-catalyzed aerobic oxidative synthesis of N-fused heterocycles using amino acids as the nitrogen source. RSC Adv 3:15636–15644. https://doi.org/10.1039/c3ra41644e

    Article  CAS  Google Scholar 

  32. Richter C, Trung MN, Mahrwald R (2015) Multicomponent cascade reactions of unprotected ketoses and amino acids—access to a defined configured quaternary stereogenic center. J Org Chem 80:10849–10865. https://doi.org/10.1021/acs.joc.5b02003

    Article  CAS  PubMed  Google Scholar 

  33. Yousefi A, Yousefi R, Panahi F, Sarikhani S, Zolghadr AR, Bahaoddini A, Khalafi-Nezhad A (2015) Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: implications for their pleiotropic effects against diabetes complications. Int J Biol Macromol 78:46–55. https://doi.org/10.1016/j.ijbiomac.2015.03.060

    Article  CAS  PubMed  Google Scholar 

  34. Suchý M, Hudson RHE (2014) Pyrimidine-fused heterocyclic frameworks based on an N4-arylcytosine scaffold: synthesis, characterization, and PNA oligomerization of the fluorescent cytosine analogue 5,6-BenzopC. J Org Chem 79:3336–3347. https://doi.org/10.1021/jo402873e

    Article  CAS  PubMed  Google Scholar 

  35. Yousefi R, Alavian-Mehr MM, Mokhtari F, Panahi F, Mehraban MH, Khalafi-Nezhad A (2013) Pyrimidine-fused heterocycle derivatives as a novel class of inhibitors for α-glucosidase.J. Enzyme Inhib Med Chem 28:1228–1235. https://doi.org/10.3109/14756366.2012.727812

    Article  CAS  Google Scholar 

  36. Kumar PM, Kumar KS, Mohakhud PK, Mukkanti K, Kapavarapu R, Parsac KVL, Pal M (2012) Construction of a six-membered fused N-heterocyclic ring via a new 3-component reaction: synthesis of (pyrazolo) pyrimidines/pyridines. Chem Commun 48:431–433. https://doi.org/10.1039/C1CC16418J

    Article  CAS  Google Scholar 

  37. Yan Z-F, Quan Z-J, Da Y-X, Zhang Z, Wang X-C (2014) A domino desulfurative coupling–acylation–hydration–Michael addition process for the synthesis of polysubstituted tetrahydro-4H-pyrido[1,2-a]pyrimidines. Chem Commun 50:13555–13558. https://doi.org/10.1039/C4CC05090H

    Article  CAS  Google Scholar 

  38. Mohammadizadeh MR, Bahramzadeh M, Taghavi SZ (2010) A novel one-pot and efficient procedure for the synthesis of 3H-spiro[isobenzofuran-1,6′-pyrrolo[2,3-d]pyrimidine]-2′,3,4′,5′-tetraone. Tetrahedron Lett 51:5807–5809. https://doi.org/10.1016/j.tetlet.2010.08.113

    Article  CAS  Google Scholar 

  39. Memarzadeh R, Noh H-B, Javadpour S, Panahi F, Feizpour A, Shim Y-B (2013) Carbon monoxide sensor based on a B2HDDT-doped PEDOT:PSS layer. Bull Korean Chem Soc 34:2291–2296. https://doi.org/10.5012/bkcs.2013.34.8.2291

    Article  CAS  Google Scholar 

  40. Panahi F, Yousefi R, Mehraban MH, Khalafi-Nezhad A (2013) Synthesis of new pyrimidine-fused derivatives as potent and selective antidiabetic a-glucosidase inhibitors. Carbohydr Res 380:81–91. https://doi.org/10.1016/j.carres.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  41. Niknam K, Panahi F, Saberi D, Mohagheghnejad M (2010) Silica-bonded S-sulfonic acid as recyclable catalyst for the synthesis of 1,8-dioxo-decahydroacridines and 1,8-dioxo-octahydroxanthenes. J Heterocycl Chem 47:292–300. https://doi.org/10.1002/jhet.303

    Article  CAS  Google Scholar 

  42. Verma C, Ebenso EE, Olasunkanmi LO, Quraishi MA, Obot IB (2016) Adsorption behavior of glucosamine based pyrimidine fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J Phys Chem C 120:11598–11611. https://doi.org/10.1021/acs.jpcc.6b04429

    Article  CAS  Google Scholar 

  43. Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112:3083–3135. https://doi.org/10.1021/cr100233r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brahmachari G, Nurjamal K, Karmakar I, Begam S, Nayek N, Mandal B (2017) Development of a water-mediated and catalyst-free green protocol for easy access of a huge array of diverse and densely functionalized pyrido[2,3-d:6,5-d′]dipyrimidines via one-pot multicomponent reaction under ambient conditions. ACS Sustainable Chem Eng 5:9494–9505. https://doi.org/10.1021/acssuschemeng.7b02696

    Article  CAS  Google Scholar 

  45. Ghahremanzadeh R, Fereshtehnejad F, Bazgir A (2010) Chromeno[2,3-d]pyrimidine-triones synthesis by a three-component coupling reaction. Chem Pharm Bull 58:516–520. https://doi.org/10.1248/cpb.58.516

    Article  CAS  Google Scholar 

  46. To QH, LeeY R, Kim SH (2012) Efficient one-pot synthesis of acridinediones by indium(III) triflate-catalyzed reactions of β-enaminones, aldehydes, and cyclic 1,3-dicarbonyls. Bull Korean Chem Soc 33:1170–1176. https://doi.org/10.5012/bkcs.2012.33.4.1170

    Article  CAS  Google Scholar 

  47. Sharma D, Bandna Reddy CB, Kumar S, Shil AK, Guha NR, Das P (2013) Cyclohexyl iodide promoted approach for coumarin analog synthesis using small scaffold. RSC Adv 17:651–659. https://doi.org/10.1007/s11030-013-9461-y

    Article  CAS  Google Scholar 

  48. Crocker K (2012) Chemistry of carboxylic acid. Research World, Delhi

    Google Scholar 

  49. Tang Z-Q, Chen Y, Liu C-N, Cai K-Y, Tu S-J (2010) A green procedure for the synthesis of 1,8-dioxodecahydroacridine derivatives under microwave irradiation in aqueous media without catalyst. Heterocycl Chem 47:363–367. https://doi.org/10.1002/jhet.322

    Article  CAS  Google Scholar 

  50. Tu S, Wang Q, Zhang Y, Xu J, Zhang J, Zhu X, Shi F (2006) An efficient one-pot synthesis of N-carboxymethylacridine-1,8-dione derivatives under microwave irradiation. J Heterocycl Chem 43:1647–1651. https://doi.org/10.1002/jhet.5570430633

    Article  CAS  Google Scholar 

  51. Mokhtary M, Mirfarjood Langroudi SA (2014) Polyvinylpolypyrrolidone-supported boron trifluoride: a mild and efficient catalyst for the synthesis of 1,8-dioxooctahydroxanthenes and 1,8-dioxodecahydroacridines. Monatsh Chem 145:1489–1494. https://doi.org/10.1007/s00706-014-1206-9

    Article  CAS  Google Scholar 

  52. El-Sabbagh OI, Rady HM (2009) Synthesis of new acridines and hydrazones derived from cyclic b-diketone for cytotoxic and antiviral evaluation. Eur J Med Chem 44:3680–3686. https://doi.org/10.1016/j.ejmech.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  53. Pal A, Shrivastava S, Dey J (2009) Salt, pH and thermoresponsive supramolecular hydrogel of N-(4-n-tetradecyloxybenzoyl)-l-carnosine. Chem Commun. https://doi.org/10.1039/B914665B

    Article  Google Scholar 

  54. Grasso GI, Bellia F, Arena G, Vecchio G, Rizzarelli E (2011) Noncovalent interaction-driven stereoselectivity of copper(II) complexes with cyclodextrin derivatives of l- and d-carnosine. Inorg Chem 50:4917–4924. https://doi.org/10.1021/ic200132a

    Article  CAS  PubMed  Google Scholar 

  55. Polshettiwar V, Baruwati B, Varma RS (2009) Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst. Chem Commun. https://doi.org/10.1039/B900784A

    Article  Google Scholar 

  56. Kim M, Ock K, ChoK JooS-W, LeeS Y (2012) Live-cell monitoring of the glutathione-triggered release of the anticancer drug topotecan on gold nanoparticles in serum-containing media. Chem Commun 48:4205–4207. https://doi.org/10.1039/C2CC30679D

    Article  CAS  Google Scholar 

  57. He L, Xu Q, Liu Y, Wei H, Tang Y, Lin W (2015) A coumarin based turn-on fluorescence probe for specific detection of glutathione over cysteine and homocysteine. ACS Appl Mater Interfaces 7:12809–12813. https://doi.org/10.1021/acsami.5b01934

    Article  CAS  PubMed  Google Scholar 

  58. Patruno A, Fornasari E, Stefano AD, Cerasa LS, Marinelli L, Baldassarre L, Sozio P, Turkez H, Franceschelli S, Ferrone A, Giacomo VD, Speranza L, Felaco M, Cacciatore I (2015) Synthesis of a novel cyclic prodrug of S-allyl-glutathione able to attenuate LPS-induced ROS production through the inhibition of MAPK pathways in U937 cells. Mol Pharm 12:66–74. https://doi.org/10.1021/mp500431r

    Article  CAS  PubMed  Google Scholar 

  59. Khalafi-Nezhad A, Panahi F (2011) Synthesis of new dihydropyrimido [4, 5-b] quinolinetrione derivatives using a four-component coupling reaction. Synthesis 6:984–992. https://doi.org/10.1055/s-0030-1258446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Research Councils of Shiraz University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farhad Panahi or Ali Khalafi-Nezhad.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6897 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourisefat, M., Panahi, F. & Khalafi-Nezhad, A. Amino acids and peptides as reactants in multicomponent reactions: modification of peptides with heterocycle backbones through combinatorial chemistry. Mol Divers 23, 317–331 (2019). https://doi.org/10.1007/s11030-018-9861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9861-0

Keywords

Navigation