Biginelli P (1891) Ueber aldehyduramide des acetessigäthers. Eur J Inorg Chem 24:1317–1319. https://doi.org/10.1002/cber.189102401228
Article
Google Scholar
Biginelli P (1891) Ueber aldehyduramide des acetessigäthers. II. Eur J Inorg Chem 24:2962–2967. https://doi.org/10.1002/cber.189102402126
Article
Google Scholar
Zaugg HE, Martin WB (1965) α-Amidoalkylations at carbon. Org React 14:88–96. https://doi.org/10.1002/0471264180.or014.02
Article
Google Scholar
Kappe CO (1993) 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron 49:6937–6963. https://doi.org/10.1016/S0040-4020(01)87971-0
Article
CAS
Google Scholar
Shaikh A, Meshram J (2013) Synthesis and pharmacological activity evaluation of oxadiazoles containing substituted dihydropyrimidinone and chloroquinoline moities. Int J Pharm Sci Res 4:4607–4614. https://doi.org/10.13040/IJPSR
Article
Google Scholar
de Fátima Â, Braga TC, Neto LdS, Terra BS, Oliveira BG, da Silva DL, Modolo LV (2015) A mini-review on Biginelli adducts with notable pharmacological properties. J Adv Res 6:363–373. https://doi.org/10.1016/j.jare.2014.10.006
Article
PubMed
CAS
Google Scholar
Wan J-P, Pan Y (2012) Recent advance in the pharmacology of dihydropyrimidinone. Mini-Rev Med Chem 12:337–349. https://doi.org/10.2174/138955712799829267
Article
PubMed
CAS
Google Scholar
Aslam M, Verma S (2012) Biological activity of newly synthesized substituted dihydropyrimidinone and thione. Int J ChemTech Res 4:109–111
CAS
Google Scholar
Bhatewara A, Jetti SR, Kadre T, Paliwal P, Jain S (2013) Microwave-assisted synthesis and biological evaluation of dihydropyrimidinone derivatives as anti-inflammatory, antibacterial, and antifungal agents. Int J Med Chem 2013:1–5. https://doi.org/10.1155/2013/197612
CAS
Article
Google Scholar
Guggilapu SD, Prajapti SK, Nagarsenkar A, Lalita G, Vegi GMN, Babu BN (2016) MoO2Cl2 catalyzed efficient synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones/thiones and polyhydroquinolines: recyclability, fluorescence and biological studies. New J Chem 40:838–843. https://doi.org/10.1039/C5NJ02444G
Article
CAS
Google Scholar
Naik NS, Shastri LA, Joshi SD, Dixit SR, Chougala BM, Samundeeswari S, Holiyachi M, Shaikh F, Madar J, Kulkarni R (2017) 3,4-Dihydropyrimidinone-coumarin analogues as a new class of selective agent against S. aureus: synthesis, biological evaluation and molecular modelling study. Bioorg Med Chem 25:1413–1422. https://doi.org/10.1016/j.bmc.2017.01.001
Article
PubMed
CAS
Google Scholar
Lu J, Bai Y, Wang Z, Yang B, Ma H (2000) One-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones using lanthanum chloride as a catalyst. Tetrahedron Lett 41:9075–9078. https://doi.org/10.1016/S0040-4039(00)01645-2
Article
CAS
Google Scholar
Paraskar A, Dewkar G, Sudalai A (2003) Cu (OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 44:3305–3308. https://doi.org/10.1016/S0040-4039(03)00619-1
Article
CAS
Google Scholar
Reddy CV, Mahesh M, Raju P, Babu TR, Reddy VN (2002) Zirconium (IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 43:2657–2659. https://doi.org/10.1016/S0040-4039(02)00280-0
Article
CAS
Google Scholar
Yu Y, Liu D, Liu C, Luo G (2007) One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst. Bioorg Med Chem Lett 17:3508–3510. https://doi.org/10.1016/j.bmcl.2006.12.068
Article
PubMed
CAS
Google Scholar
Debache A, Amimour M, Belfaitah A, Rhouati S, Carboni B (2008) A one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones catalyzed by triphenylphosphine as Lewis base. Tetrahedron Lett 49:6119–6121. https://doi.org/10.1016/j.tetlet.2008.08.016
Article
CAS
Google Scholar
Tamaddon F, Razmi Z, Jafari AA (2010) Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1, 4-dihydropyridines using ammonium carbonate in water. Tetrahedron Lett 51:1187–1189. https://doi.org/10.1016/j.tetlet.2009.12.098
Article
CAS
Google Scholar
Gong LZ, Chen XH, Xu XY (2007) Asymmetric organocatalytic Biginelli reactions: a new approach to quickly access optically active 3,4-dihydropyrimidin-2-(1H)-ones. Chem Eur J 13:8920–8926. https://doi.org/10.1002/chem.200700840
Article
PubMed
CAS
Google Scholar
Ding D, Zhao CG (2010) Primary amine catalyzed Biginelli reaction for the enantioselective synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Eur J Org Chem 2010:3802-3005. https://doi.org/10.1002/ejoc.201000448
CAS
Article
Google Scholar
Huang Y, Yang F, Zhu C (2005) Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines. J Am Chem Soc 127:16386–16387. https://doi.org/10.1021/ja056092f
Article
PubMed
CAS
Google Scholar
Folkers K, Johnson TJ (1933) Researches on pyrimidines. CXXXVI. The mechanism of formation of tetrahydropyrimidines by the Biginelli reaction. J Am Chem Soc 55:3784–3791. https://doi.org/10.1021/ja01336a054
Article
CAS
Google Scholar
Ramos LM, Ponce de Leon y Tobio AY, dos Santos MR, de Oliveira HC, Gomes AF, Gozzo FC, de Oliveira AL, Neto BA (2012) Mechanistic studies on lewis acid catalyzed biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J Org Chem 77:10184–10193. https://doi.org/10.1021/jo301806n
Article
PubMed
CAS
Google Scholar
Heravi M, Talaei B (2017) Chapter two-diketene as privileged synthon in the syntheses of heterocycles part 1: four-and five-membered ring heterocycles. Adv Heterocycl Chem 122:43–114. https://doi.org/10.1016/bs.aihch.2016.10.003
Article
Google Scholar
Heravi MM, Talaei B (2016) Ketenes as privileged synthons in the synthesis of heterocyclic compounds part 3: six-membered heterocycles. Adv Heterocycl Chem 118:195–291. https://doi.org/10.1016/bs.aihch.2015.10.007
Article
CAS
Google Scholar
Heravi MM, Vavsari VF (2015) Chapter two-recent advances in application of amino acids: key building blocks in design and syntheses of heterocyclic compounds. Adv Heterocycl Chem 114:77–145. https://doi.org/10.1016/bs.aihch.2015.02.002
Article
CAS
Google Scholar
Heravi MM, Talaei B (2015) Ketenes as privileged synthons in the syntheses of heterocyclic compounds part 2: five-membered heterocycles. Adv Heterocycl Chem 114:147–225. https://doi.org/10.1016/bs.aihch.2015.02.001
Article
CAS
Google Scholar
Heravi MM, Zadsirjan V (2015) Chapter five-recent advances in the synthesis of benzo [b] furans. Adv Heterocycl Chem 117:261–376. https://doi.org/10.1016/bs.aihch.2015.08.003
Article
CAS
Google Scholar
Heravi MM, Alishiri T (2014) Dimethyl acetylenedicarboxylate. Adv Heterocycl Chem 113:1–66. https://doi.org/10.1016/11978-0-12-8U0170-7.00001-8
Article
CAS
Google Scholar
Heravi MM, Talaei B (2014) Ketenes as privileged synthons in the synthesis of heterocyclic compounds, part 1: three-and four-membered heterocycles. Adv Heterocycl Chem 113:143–244. https://doi.org/10.1016/B978-0-12-800170-7.00004-3
Article
CAS
Google Scholar
Heravi MM, Khaghaninejad S, Mostofi M (2014) Pechmann reaction in the synthesis of coumarin derivatives. Adv Heterocycl Chem 112:1–50. https://doi.org/10.1016/B978-0-12-800171-4.00001-9
Article
CAS
Google Scholar
Heravi MM, Khaghaninejad S, Nazari N (2014) Bischler–Napieralski reaction in the syntheses of isoquinolines. Adv Heterocycl Chem 112:183–234. https://doi.org/10.1016/B978-0-12-800171-4.00005-6
Article
CAS
Google Scholar
Khaghaninejad S, Heravi MM (2014) Paal–Knorr reaction in the synthesis of heterocyclic compounds. Adv Heterocycl Chem 111:95–146. https://doi.org/10.1016/B978-0-12-420160-6.00003-3
Article
CAS
Google Scholar
Heravi MM, Hashemi E, Beheshtiha YS, Ahmadi S, Hosseinnejad T (2014) PdCl2 on modified poly (styrene-co-maleic anhydride): a highly active and recyclable catalyst for the Suzuki–Miyaura and Sonogashira reactions. J Mol Catal Chem 394:74–82. https://doi.org/10.1016/j.molcata.2014.07.001
Article
CAS
Google Scholar
Heravi MM, Hashemi E (2012) Recent advances in application of intramolecular Suzuki cross-coupling in cyclization and heterocyclization. Monatsh Chem 143:861–880. https://doi.org/10.1007/s00706-012-0746-0
Article
CAS
Google Scholar
Heravi MM, Sadjadi S (2009) Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds. Tetrahedron 65:7761–7775. https://doi.org/10.1016/j.tet.2009.06.028
Article
CAS
Google Scholar
Heravi MM, Fazeli A (2010) Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds. Heterocycles 81:1979–2026
Article
CAS
Google Scholar
Mirsafaei R, Heravi MM, Ahmadi S, Moslemin MH, Hosseinnejad T (2015) In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water. J Mol Catal Chem 402:100–108. https://doi.org/10.1016/j.molcata.2015.03.006
Article
CAS
Google Scholar
Hosseinnejad T, Fattahi B, Heravi MM (2015) Computational studies on the regioselectivity of metal-catalyzed synthesis of 1, 2, 3 triazoles via Click reaction: a review. J Mol Catal Chem 21:264–301. https://doi.org/10.1007/s00894-015-2810-2
CAS
Article
Google Scholar
Heravi MM, Derikvand F, Bamoharram FF (2005) A catalytic method for synthesis of Biginelli-type 3, 4-dihydropyrimidin-2(1H)-one using 12-tungstophosphoric acid. J Mol Catal Chem 242:173–175. https://doi.org/10.1016/j.molcata.2005.08.009
Article
CAS
Google Scholar
Tajbakhsh M, Mohajerani B, Heravi MM, Ahmadi AN (2005) Natural HEU type zeolite catalyzed Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H) one derivatives. J Mol Catal Chem 236:216–219. https://doi.org/10.1016/j.molcata.2005.04.033
Article
CAS
Google Scholar
Sandhu JS (2012) Past, present and future of the Biginelli reaction: a critical perspective. Arkivoc 2012:66–133. https://doi.org/10.3998/ark.5550190.0013.103
Article
Google Scholar
Matache M, Dobrota C, Bogdan D, P Funeriu D (2011) Recent developments in the reactivity of the Biginelli compounds. Curr Org Chem 8:356–373
CAS
Google Scholar
Heravi MM, Lashaki TB, Poorahmad N (2015) Applications of sharpless asymmetric epoxidation in total synthesis. Tetrahedron Asymmetry 26:405–495. https://doi.org/10.1016/j.tetasy.2015.03.006
Article
CAS
Google Scholar
Heravi MM, Dehghani M, Zadsirjan V (2016) Rh-catalyzed asymmetric 1,4-addition reactions to α, β-unsaturated carbonyl and related compounds: an update. Tetrahedron Asymmetry 27:513–588. https://doi.org/10.1016/j.tetasy.2016.05.004
Article
CAS
Google Scholar
Heravi MM, Zadsirjan V, Farajpour B (2016) Applications of oxazolidinones as chiral auxiliaries in the asymmetric alkylation reaction applied to total synthesis. RSC Adv 6:30498–30551. https://doi.org/10.1039/C6RA00653A
Article
CAS
Google Scholar
Heravi MM, Zadsirjan V, Dehghani M, Hosseintash N (2017) Current applications of organocatalysts in asymmetric aldol reactions: an update. Tetrahedron Asymmetry 28:587–707. https://doi.org/10.1016/j.tetasy.2017.04.006
Article
CAS
Google Scholar
Heravi MM, Asadi S, Lashkariani BM (2013) Recent progress in asymmetric Biginelli reaction. Mol Divers 17:389–407. https://doi.org/10.1007/s11030-013-9439-9
Article
PubMed
CAS
Google Scholar
Li N, Chen X-H, Song J, Luo S-W, Fan W, Gong L-Z (2009) Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3, 3′-disubstituents of phosphoric acids. J Am Chem Soc 131:15301–15310. https://doi.org/10.1021/ja905320q
Article
PubMed
CAS
Google Scholar
Guo Y, Gao Z, Meng X, Huang G, Zhong H, Yu H, Ding X, Tang H, Zou C (2017) Highly enantioselective Biginelli reaction of aliphatic aldehydes catalyzed by chiral phosphoric acids. Synlett 28:2041–2045. https://doi.org/10.1055/s-0036-1588853
Article
CAS
Google Scholar
Uraguchi D, Ueki Y, Ooi T (2009) Chiral organic ion pair catalysts assembled through a hydrogen-bonding network. Science 326:120–123. https://doi.org/10.1126/science.1176758
Article
PubMed
CAS
Google Scholar
Bella M, Schietroma DMS, Cusella PP, Gasperi T, Visca V (2009) Synergic asymmetric organocatalysis (SAOc) of Cinchona alkaloids and secondary amines in the synthesis of bicyclo [2.2.2] octan-2-ones. Chem Commun. https://doi.org/10.1039/b816550e
Article
Google Scholar
Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type—a literature survey. Eur J Med Chem 35:1043–1052. https://doi.org/10.1016/S0223-5234(00)01189-2
Article
PubMed
CAS
Google Scholar
Atwal KS, Rovnyak GC, O’Reilly BC, Schwartz J (1989) Substituted 1,4-dihydropyrimidines. Synthesis of selectively functionalized 2-hetero-1,4-dihydropyrimidines. J Org Chem 54:5898–5907. https://doi.org/10.1021/jo00286a020
Article
CAS
Google Scholar
Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O’Reilly BC (1991) Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1, 2, 3, 4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J Med Chem 34:806–811. https://doi.org/10.1021/jm00106a048
Article
PubMed
CAS
Google Scholar
Rovnyak GC, Kimball SD, Beyer B, Cucinotta G, DiMarco JD, Gougoutas J, Hedberg A, Malley M, McCarthy JP (1995) Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J Med Chem 38:119–129. https://doi.org/10.1021/jm00001a017
Article
PubMed
CAS
Google Scholar
Hang Z, Zhu J, Lian X, Xu P, Yu H, Han S (2016) A highly enantioselective Biginelli reaction using self-assembled methanoproline-thiourea organocatalysts: asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines. Chem Commun 52:80–83. https://doi.org/10.1039/c5cc07880f
Article
CAS
Google Scholar
Hang Z, Dai G, Yu H, Han S (2016) Highly enantioselective synthesis of the 6-isopropyl-3, 4-dihydropyrimidin-2(1H)-thiones via asymmetric catalytic Biginelli reactions. Curr Org Chem 20:2917–2925. https://doi.org/10.2174/1385272820666160411151148
Article
CAS
Google Scholar
Yu H, Dai G, He QR, Tang JJ (2017) Enantioselective synthesis and evaluation of 4-styryldihydropyrimidin-2-thiones as anti-proliferative agents. Med Chem Res 26:787–795. https://doi.org/10.1007/s00044-017-1790-4
Article
CAS
Google Scholar
Hang Z, Zhu J, Lian X, Xu P, Yu H, Han S (2015) A highly enantioselective Biginelli reaction using self-assembled methanoproline–thiourea organocatalysts: asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines. Chem Commun 52:80–83. https://doi.org/10.1039/C5CC07880F
Article
CAS
Google Scholar
Titova Y, Fedorova O, Rusinov G, Vigorov A, Krasnov V, Murashkevich A, Charushin V (2015) Effect of nanosized TiO2–SiO2 covalently modified by chiral molecules on the asymmetric Biginelli reaction. Catal Today 241:270–274. https://doi.org/10.1016/j.cattod.2014.01.035
Article
CAS
Google Scholar
Lynch B, Glennon JD, Tröltzsch C, Menyes U, Pursch M, Albert K (1997) A (−)-menthyl bonded silica phase for chiral separations: synthesis and solid state NMR characterization. Anal Chem 69:1756–1762. https://doi.org/10.1021/ac960717y
Article
PubMed
CAS
Google Scholar
Fedorova O, Valova M, Titova Y, Ovchinnikova I, Grishakov A, Uimin M, Mysik A, Ermakov A, Rusinov G, Charushin V (2011) Catalytic effect of nanosized metal oxides in the Biginelli reaction. Kinet Catal 52:226–233
Article
CAS
Google Scholar
Qu H, Li X, Mo F, Lin X (2013) Efficient synthesis of dihydropyrimidinones via a three-component Biginelli-type reaction of urea, alkylaldehyde and arylaldehyde. Beilstein J Org Chem 9:2846–2851. https://doi.org/10.3762/bjoc.9.320
Article
PubMed
PubMed Central
CAS
Google Scholar
Saha S, Moorthy JN (2010) Enantioselective organocatalytic Biginelli reaction: dependence of the catalyst on sterics, hydrogen bonding, and reinforced chirality. J Org Chem 76:396–402. https://doi.org/10.1021/jo101717m
Article
PubMed
CAS
Google Scholar
Xu D-Z, Li H, Wang Y (2012) Highly enantioselective Biginelli reaction catalyzed by a simple chiral primary amine catalyst: asymmetric synthesis of dihydropyrimidines. Tetrahedron 68:7867–7872. https://doi.org/10.1016/j.tet.2012.07.027
Article
CAS
Google Scholar
Fedorova OV, Titova YA, Vigorov AY, Toporova MS, Alisienok OA, Murashkevich AN, Krasnov VP, Rusinov GL, Charushin VN (2016) Asymmetric Biginelli reaction catalyzed by silicon, titanium and aluminum oxides. Catal Lett 1(46):493–498. https://doi.org/10.1007/s10562-015-1666-5
Article
CAS
Google Scholar
Xin J, Chang L, Hou Z, Shang D, Liu X, Feng X (2008) An enantioselective Biginelli reaction catalyzed by a simple chiral secondary amine and achiral Brønsted acid by a dual-activation route. Chem Eur J 14:3177–3181. https://doi.org/10.1002/chem.200701581
Article
PubMed
CAS
Google Scholar
Lacotte P, Buisson DA, Ambroise Y (2013) Synthesis, evaluation and absolute configuration assignment of novel dihydropyrimidin-2-ones as picomolar sodium iodide symporter inhibitors. Eur J Med Chem 62:722–727. https://doi.org/10.1016/j.ejmech.2013.01.043
Article
PubMed
CAS
Google Scholar
Petrini M (2005) α-Amido sulfones as stable precursors of reactive N-acylimino derivatives. Chem Rev 105:3949–3977. https://doi.org/10.1021/cr050528s
Article
PubMed
CAS
Google Scholar
Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis. Chem Rev 107:5713–5743. https://doi.org/10.1021/cr068373r
Article
PubMed
CAS
Google Scholar
Steiner T (1997) Unrolling the hydrogen bond properties of C-H··· O interactions. Chem Commun. https://doi.org/10.1039/A603049A
Article
Google Scholar
Lillo VJ, Saá JM (2016) Towards enzyme-like, sustainable catalysis: switchable, highly efficient asymmetric synthesis of enantiopure Biginelli dihydropyrimidinones or hexahydropyrimidinones. Chem Eur J 22:17182–17186. https://doi.org/10.1002/chem.201604433
Article
PubMed
CAS
Google Scholar
Iglesias AL, Aguirre G, Somanathan R, Parra-Hake M (2004) New chiral Schiff base–Cu (II) complexes as cyclopropanation catalysts. Polyhedron 23:3051–3062. https://doi.org/10.1016/j.poly.2004.09.007
Article
CAS
Google Scholar
Ausbun-Valdés C, González-Guerrero EE, Toscano RA (2007) Characterization and crystal structure of some Schiff ase copper (II) complexes derived from enantiomeric pairs of chiral amines. Allg Chem 633:1251–1256. https://doi.org/10.1021/jm00106a048
Article
Google Scholar
Kamali M (2015) Asymmetric synthesis of dihydropyrimidines using chiral Schiff base copper(II) complex as a chiral catalyst. Int J ChemTech Res 8:536–541
CAS
Google Scholar
Dubernet M, Duguet N, Colliandre L, Berini C, Helleboid S, Bourotte M, Daillet M, Maingot L, Daix S, Delhomel JF, Morin-Allory L, Routier S, Walczak R (2013) Identification of new nonsteroidal RORα ligands; Related structure-activity relationships and docking studies. ACS Med Chem Lett 4:504–508. https://doi.org/10.1021/ml300471d
Article
PubMed
PubMed Central
CAS
Google Scholar
Shan Z, Hu X, Zhou Y, Peng X, Li Z (2010) A convenient approach to C2-Chiral 1,1,4,4-Tetrasubstituted Butanetetraols: direct alkylation or arylation of enantiomerically pure diethyl tartrates. Helv Chim Acta 93:497–503. https://doi.org/10.1002/hlca.200900274
Article
CAS
Google Scholar
Hu X, Shan Z, Peng X, Li Z (2009) Convenient access to sterically hindered C 2 chiral 2,2,5,5-tetraphenyltetrahydrofuran-3,4-diols: intramolecular selective 1,4-cyclocondensation of (2R,3R)- and (2S,3S)-1,1,4,4-tetraphenylbutanetetraols. Tetrahedron Asymmetry 20:2474–2478. https://doi.org/10.1016/j.tetasy.2009.10.005
Article
CAS
Google Scholar
Hu X, Zhang R, Xie J, Zhou Z, Shan Z (2017) Synthesis of a novel sterically hindered chiral cyclic phosphoric acid derived from l-tartaric acid and application to the asymmetric catalytic Biginelli reaction. Tetrahedron Asymmetry 28:69–74. https://doi.org/10.1016/j.tetasy.2016.11.014
Article
CAS
Google Scholar
Lillo VJ, Mansilla J, Saá JM (2016) Organocatalysis by networks of cooperative hydrogen bonds: enantioselective direct Mannich addition to preformed arylideneureas. Angew Chem Int Ed 55:4312–4316. https://doi.org/10.1002/anie.201511555
Article
CAS
Google Scholar
Baleizao C, Garcia H (2006) Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem Rev 106:3987–4043. https://doi.org/10.1021/jm00106a048
Article
PubMed
CAS
Google Scholar
Frings M, Thomé I, Bolm C (2012) Synthesis of chiral sulfoximine-based thioureas and their application in asymmetric organocatalysis. Beilstein J Org Chem 8:1443–1451. https://doi.org/10.3762/bjoc.8.164
Article
PubMed
PubMed Central
CAS
Google Scholar
Frings M, Atodiresei I, Wang Y, Runsink J, Raabe G, Bolm C (2010) C1-symmetric aminosulfoximines in copper-catalyzed asymmetric vinylogous Mukaiyama Aldol reactions. Chem Eur J 16:4577–4587. https://doi.org/10.1002/chem.200903077
Article
PubMed
CAS
Google Scholar
Langner M, Rémy P, Bolm C (2005) Highly modular synthesis of C1-symmetric aminosulfoximines and their use as ligands in copper-catalyzed asymmetric Mukaiyama-Aldol reactions. Chem Eur J 11:6254–6265. https://doi.org/10.1002/chem.200500497
Article
PubMed
CAS
Google Scholar
Langner M, Bolm C (2004) C1-symmetric sulfoximines as ligands in copper-catalyzed asymmetric Mukaiyama-type Aldol reactions. Angew Chem Int Ed 43:5984–5987. https://doi.org/10.1002/anie.200460953
Article
CAS
Google Scholar
Bolm C, Moll G, Kahmann JD (2001) Synthesis of pseudopeptides with sulfoximines as chiral backbone modifying elements. Chem Eur J 7:1118–1128. https://doi.org/10.1002/1521-3765(20010302)7:5
Article
PubMed
CAS
Google Scholar
Yu H, Xu P, He H, Zhu J, Lin H, Han S (2017) Highly enantioselective Biginelli reactions using methanopyroline/thiourea-based dual organocatalyst systems: asymmetric synthesis of 4-substituted unsaturated aryl dihydropyrimidines. Tetrahedron Asymmetry 28:257–265. https://doi.org/10.1016/j.tetasy.2016.11.015
Article
CAS
Google Scholar
Sameera WMC, Maeda S, Morokuma K (2016) Computational catalysis using the artificial force induced reaction method. Acc Chem Res 49:763–773. https://doi.org/10.1021/acs.accounts.6b00023
Article
PubMed
CAS
Google Scholar
Hu X, Mao J, Sun Y, Chen H, Li H (2009) Acetylacetone–Fe catalyst modified by imidazole ionic compound and its application in aerobic oxidation of β-isophorone. Catal Commun 10:1908–1912. https://doi.org/10.1016/j.catcom.2009.06.024
Article
CAS
Google Scholar
Karthikeyan P, Aswar SA, Muskawar PN, Bhagat PR, Senthil Kumar S (2013) Development and efficient 1-glycyl-3-methyl imidazolium chloride-copper(II) complex catalyzed highly enantioselective synthesis of 3, 4-dihydropyrimidin-2(1H)-ones. J Organomet Chem 723:154–162. https://doi.org/10.1016/j.jorganchem.2012.06.022
Article
CAS
Google Scholar
Vishnevskii SG, Drapailo AB, Ruban AV, Pirozhenko VV, Shishkina SV, Shishkin OV, Kal’Chenko VI (2014) Synthesis and structure of [2-oxo(thioxo)tetrahydropyrimidin-4-yl]calix[4] arenes. Russ J Org Chem 50:571–580. https://doi.org/10.1134/S1070428014040228
Article
CAS
Google Scholar
Stucchi M, Lesma G, Meneghetti F, Rainoldi G, Sacchetti A, Silvani A (2016) Organocatalytic asymmetric Biginelli-like reaction involving isatin. J Org Chem 81:1877–1884. https://doi.org/10.1021/acs.joc.5b02680
Article
PubMed
CAS
Google Scholar
An D, Fan YS, Gao Y, Zhu ZQ, Zheng LY, Zhang SQ (2014) Highly enantioselective Biginelli reaction catalyzed by double axially chiral bisphosphorylimides. Eur J Org Chem 2014:301–306. https://doi.org/10.1002/ejoc.201301560
Article
CAS
Google Scholar
Krivtsov I, Ilkaeva M, Avdin V, Zherebtsov D (2013) Properties and segregation stability of the composite silica-zirconia xerogels prepared via “acidic” and “basic” precipitation routes. J Non Cryst Solids 362:95–100. https://doi.org/10.1016/j.jnoncrysol.2012.11.011
Article
CAS
Google Scholar
Krivtsov IV, Titova YA, Ilkaeva MV, Avdin VV, Fedorova OV, Khainakov SA, Garcia JR, Rusinov GL, Charushin VN (2014) Catalysts for enantioselective Biginelli reaction based on the composite silica-zirconia xerogels prepared using different zirconium sources. J Sol-Gel Sci Technol 69:448–452. https://doi.org/10.1007/s10971-013-3242-z
Article
CAS
Google Scholar
Barbero M, Cadamuro S, Dughera S (2017) A Brønsted acid catalysed enantioselective Biginelli reaction. Green Chem 19:1529–1535. https://doi.org/10.1039/c6gc03274e
Article
CAS
Google Scholar
Mahlau M, List B (2013) Asymmetric counteranion-directed catalysis: concept, definition, and applications. Angew Chem Int Ed 52:518–533. https://doi.org/10.1002/anie.201205343
Article
CAS
Google Scholar
Guan Z, Chen YL, Yuan Y, Song J, Yang DC, Xue Y, He YH (2014) Earthworm is a versatile and sustainable biocatalyst for organic synthesis. PLoS ONE. https://doi.org/10.1371/journal.pone.0105284
Article
PubMed
PubMed Central
Google Scholar