Skip to main content

Current progress in asymmetric Biginelli reaction: an update

Abstract

The Biginelli reaction, involving a three-component reaction of an aromatic aldehyde, urea and ethyl acetoacetate, has emerged as an extremely useful synthetic tool to organic chemists for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones and related heterocyclic compounds. In the past decades, the asymmetric variants of this reaction have been at the forefront of investigations in several research groups. In 2013, we highlighted the developments occurred in the asymmetric version of the Biginelli reaction. This review article focuses on the recent developments of asymmetric Biginelli reaction covers the literature going back to 2012.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22

Abbreviations

DCC:

N,N′-Dicyclohexylmethandiimine

DCM:

Dichloromethane

DIPEA:

Diisopropylethylamine

DMEDA:

Dimethylethylenediamine

TBTU:

2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

References

  1. Biginelli P (1891) Ueber aldehyduramide des acetessigäthers. Eur J Inorg Chem 24:1317–1319. https://doi.org/10.1002/cber.189102401228

    Article  Google Scholar 

  2. Biginelli P (1891) Ueber aldehyduramide des acetessigäthers. II. Eur J Inorg Chem 24:2962–2967. https://doi.org/10.1002/cber.189102402126

    Article  Google Scholar 

  3. Zaugg HE, Martin WB (1965) α-Amidoalkylations at carbon. Org React 14:88–96. https://doi.org/10.1002/0471264180.or014.02

    Article  Google Scholar 

  4. Kappe CO (1993) 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron 49:6937–6963. https://doi.org/10.1016/S0040-4020(01)87971-0

    Article  CAS  Google Scholar 

  5. Shaikh A, Meshram J (2013) Synthesis and pharmacological activity evaluation of oxadiazoles containing substituted dihydropyrimidinone and chloroquinoline moities. Int J Pharm Sci Res 4:4607–4614. https://doi.org/10.13040/IJPSR

    Article  Google Scholar 

  6. de Fátima Â, Braga TC, Neto LdS, Terra BS, Oliveira BG, da Silva DL, Modolo LV (2015) A mini-review on Biginelli adducts with notable pharmacological properties. J Adv Res 6:363–373. https://doi.org/10.1016/j.jare.2014.10.006

    Article  PubMed  CAS  Google Scholar 

  7. Wan J-P, Pan Y (2012) Recent advance in the pharmacology of dihydropyrimidinone. Mini-Rev Med Chem 12:337–349. https://doi.org/10.2174/138955712799829267

    Article  PubMed  CAS  Google Scholar 

  8. Aslam M, Verma S (2012) Biological activity of newly synthesized substituted dihydropyrimidinone and thione. Int J ChemTech Res 4:109–111

    CAS  Google Scholar 

  9. Bhatewara A, Jetti SR, Kadre T, Paliwal P, Jain S (2013) Microwave-assisted synthesis and biological evaluation of dihydropyrimidinone derivatives as anti-inflammatory, antibacterial, and antifungal agents. Int J Med Chem 2013:1–5. https://doi.org/10.1155/2013/197612

    CAS  Article  Google Scholar 

  10. Guggilapu SD, Prajapti SK, Nagarsenkar A, Lalita G, Vegi GMN, Babu BN (2016) MoO2Cl2 catalyzed efficient synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones/thiones and polyhydroquinolines: recyclability, fluorescence and biological studies. New J Chem 40:838–843. https://doi.org/10.1039/C5NJ02444G

    Article  CAS  Google Scholar 

  11. Naik NS, Shastri LA, Joshi SD, Dixit SR, Chougala BM, Samundeeswari S, Holiyachi M, Shaikh F, Madar J, Kulkarni R (2017) 3,4-Dihydropyrimidinone-coumarin analogues as a new class of selective agent against S. aureus: synthesis, biological evaluation and molecular modelling study. Bioorg Med Chem 25:1413–1422. https://doi.org/10.1016/j.bmc.2017.01.001

    Article  PubMed  CAS  Google Scholar 

  12. Lu J, Bai Y, Wang Z, Yang B, Ma H (2000) One-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones using lanthanum chloride as a catalyst. Tetrahedron Lett 41:9075–9078. https://doi.org/10.1016/S0040-4039(00)01645-2

    Article  CAS  Google Scholar 

  13. Paraskar A, Dewkar G, Sudalai A (2003) Cu (OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 44:3305–3308. https://doi.org/10.1016/S0040-4039(03)00619-1

    Article  CAS  Google Scholar 

  14. Reddy CV, Mahesh M, Raju P, Babu TR, Reddy VN (2002) Zirconium (IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 43:2657–2659. https://doi.org/10.1016/S0040-4039(02)00280-0

    Article  CAS  Google Scholar 

  15. Yu Y, Liu D, Liu C, Luo G (2007) One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst. Bioorg Med Chem Lett 17:3508–3510. https://doi.org/10.1016/j.bmcl.2006.12.068

    Article  PubMed  CAS  Google Scholar 

  16. Debache A, Amimour M, Belfaitah A, Rhouati S, Carboni B (2008) A one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones catalyzed by triphenylphosphine as Lewis base. Tetrahedron Lett 49:6119–6121. https://doi.org/10.1016/j.tetlet.2008.08.016

    Article  CAS  Google Scholar 

  17. Tamaddon F, Razmi Z, Jafari AA (2010) Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1, 4-dihydropyridines using ammonium carbonate in water. Tetrahedron Lett 51:1187–1189. https://doi.org/10.1016/j.tetlet.2009.12.098

    Article  CAS  Google Scholar 

  18. Gong LZ, Chen XH, Xu XY (2007) Asymmetric organocatalytic Biginelli reactions: a new approach to quickly access optically active 3,4-dihydropyrimidin-2-(1H)-ones. Chem Eur J 13:8920–8926. https://doi.org/10.1002/chem.200700840

    Article  PubMed  CAS  Google Scholar 

  19. Ding D, Zhao CG (2010) Primary amine catalyzed Biginelli reaction for the enantioselective synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Eur J Org Chem 2010:3802-3005. https://doi.org/10.1002/ejoc.201000448

    CAS  Article  Google Scholar 

  20. Huang Y, Yang F, Zhu C (2005) Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines. J Am Chem Soc 127:16386–16387. https://doi.org/10.1021/ja056092f

    Article  PubMed  CAS  Google Scholar 

  21. Folkers K, Johnson TJ (1933) Researches on pyrimidines. CXXXVI. The mechanism of formation of tetrahydropyrimidines by the Biginelli reaction. J Am Chem Soc 55:3784–3791. https://doi.org/10.1021/ja01336a054

    Article  CAS  Google Scholar 

  22. Ramos LM, Ponce de Leon y Tobio AY, dos Santos MR, de Oliveira HC, Gomes AF, Gozzo FC, de Oliveira AL, Neto BA (2012) Mechanistic studies on lewis acid catalyzed biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J Org Chem 77:10184–10193. https://doi.org/10.1021/jo301806n

    Article  PubMed  CAS  Google Scholar 

  23. Heravi M, Talaei B (2017) Chapter two-diketene as privileged synthon in the syntheses of heterocycles part 1: four-and five-membered ring heterocycles. Adv Heterocycl Chem 122:43–114. https://doi.org/10.1016/bs.aihch.2016.10.003

    Article  Google Scholar 

  24. Heravi MM, Talaei B (2016) Ketenes as privileged synthons in the synthesis of heterocyclic compounds part 3: six-membered heterocycles. Adv Heterocycl Chem 118:195–291. https://doi.org/10.1016/bs.aihch.2015.10.007

    Article  CAS  Google Scholar 

  25. Heravi MM, Vavsari VF (2015) Chapter two-recent advances in application of amino acids: key building blocks in design and syntheses of heterocyclic compounds. Adv Heterocycl Chem 114:77–145. https://doi.org/10.1016/bs.aihch.2015.02.002

    Article  CAS  Google Scholar 

  26. Heravi MM, Talaei B (2015) Ketenes as privileged synthons in the syntheses of heterocyclic compounds part 2: five-membered heterocycles. Adv Heterocycl Chem 114:147–225. https://doi.org/10.1016/bs.aihch.2015.02.001

    Article  CAS  Google Scholar 

  27. Heravi MM, Zadsirjan V (2015) Chapter five-recent advances in the synthesis of benzo [b] furans. Adv Heterocycl Chem 117:261–376. https://doi.org/10.1016/bs.aihch.2015.08.003

    Article  CAS  Google Scholar 

  28. Heravi MM, Alishiri T (2014) Dimethyl acetylenedicarboxylate. Adv Heterocycl Chem 113:1–66. https://doi.org/10.1016/11978-0-12-8U0170-7.00001-8

    Article  CAS  Google Scholar 

  29. Heravi MM, Talaei B (2014) Ketenes as privileged synthons in the synthesis of heterocyclic compounds, part 1: three-and four-membered heterocycles. Adv Heterocycl Chem 113:143–244. https://doi.org/10.1016/B978-0-12-800170-7.00004-3

    Article  CAS  Google Scholar 

  30. Heravi MM, Khaghaninejad S, Mostofi M (2014) Pechmann reaction in the synthesis of coumarin derivatives. Adv Heterocycl Chem 112:1–50. https://doi.org/10.1016/B978-0-12-800171-4.00001-9

    Article  CAS  Google Scholar 

  31. Heravi MM, Khaghaninejad S, Nazari N (2014) Bischler–Napieralski reaction in the syntheses of isoquinolines. Adv Heterocycl Chem 112:183–234. https://doi.org/10.1016/B978-0-12-800171-4.00005-6

    Article  CAS  Google Scholar 

  32. Khaghaninejad S, Heravi MM (2014) Paal–Knorr reaction in the synthesis of heterocyclic compounds. Adv Heterocycl Chem 111:95–146. https://doi.org/10.1016/B978-0-12-420160-6.00003-3

    Article  CAS  Google Scholar 

  33. Heravi MM, Hashemi E, Beheshtiha YS, Ahmadi S, Hosseinnejad T (2014) PdCl2 on modified poly (styrene-co-maleic anhydride): a highly active and recyclable catalyst for the Suzuki–Miyaura and Sonogashira reactions. J Mol Catal Chem 394:74–82. https://doi.org/10.1016/j.molcata.2014.07.001

    Article  CAS  Google Scholar 

  34. Heravi MM, Hashemi E (2012) Recent advances in application of intramolecular Suzuki cross-coupling in cyclization and heterocyclization. Monatsh Chem 143:861–880. https://doi.org/10.1007/s00706-012-0746-0

    Article  CAS  Google Scholar 

  35. Heravi MM, Sadjadi S (2009) Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds. Tetrahedron 65:7761–7775. https://doi.org/10.1016/j.tet.2009.06.028

    Article  CAS  Google Scholar 

  36. Heravi MM, Fazeli A (2010) Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds. Heterocycles 81:1979–2026

    Article  CAS  Google Scholar 

  37. Mirsafaei R, Heravi MM, Ahmadi S, Moslemin MH, Hosseinnejad T (2015) In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water. J Mol Catal Chem 402:100–108. https://doi.org/10.1016/j.molcata.2015.03.006

    Article  CAS  Google Scholar 

  38. Hosseinnejad T, Fattahi B, Heravi MM (2015) Computational studies on the regioselectivity of metal-catalyzed synthesis of 1, 2, 3 triazoles via Click reaction: a review. J Mol Catal Chem 21:264–301. https://doi.org/10.1007/s00894-015-2810-2

    CAS  Article  Google Scholar 

  39. Heravi MM, Derikvand F, Bamoharram FF (2005) A catalytic method for synthesis of Biginelli-type 3, 4-dihydropyrimidin-2(1H)-one using 12-tungstophosphoric acid. J Mol Catal Chem 242:173–175. https://doi.org/10.1016/j.molcata.2005.08.009

    Article  CAS  Google Scholar 

  40. Tajbakhsh M, Mohajerani B, Heravi MM, Ahmadi AN (2005) Natural HEU type zeolite catalyzed Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H) one derivatives. J Mol Catal Chem 236:216–219. https://doi.org/10.1016/j.molcata.2005.04.033

    Article  CAS  Google Scholar 

  41. Sandhu JS (2012) Past, present and future of the Biginelli reaction: a critical perspective. Arkivoc 2012:66–133. https://doi.org/10.3998/ark.5550190.0013.103

    Article  Google Scholar 

  42. Matache M, Dobrota C, Bogdan D, P Funeriu D (2011) Recent developments in the reactivity of the Biginelli compounds. Curr Org Chem 8:356–373

    CAS  Google Scholar 

  43. Heravi MM, Lashaki TB, Poorahmad N (2015) Applications of sharpless asymmetric epoxidation in total synthesis. Tetrahedron Asymmetry 26:405–495. https://doi.org/10.1016/j.tetasy.2015.03.006

    Article  CAS  Google Scholar 

  44. Heravi MM, Dehghani M, Zadsirjan V (2016) Rh-catalyzed asymmetric 1,4-addition reactions to α, β-unsaturated carbonyl and related compounds: an update. Tetrahedron Asymmetry 27:513–588. https://doi.org/10.1016/j.tetasy.2016.05.004

    Article  CAS  Google Scholar 

  45. Heravi MM, Zadsirjan V, Farajpour B (2016) Applications of oxazolidinones as chiral auxiliaries in the asymmetric alkylation reaction applied to total synthesis. RSC Adv 6:30498–30551. https://doi.org/10.1039/C6RA00653A

    Article  CAS  Google Scholar 

  46. Heravi MM, Zadsirjan V, Dehghani M, Hosseintash N (2017) Current applications of organocatalysts in asymmetric aldol reactions: an update. Tetrahedron Asymmetry 28:587–707. https://doi.org/10.1016/j.tetasy.2017.04.006

    Article  CAS  Google Scholar 

  47. Heravi MM, Asadi S, Lashkariani BM (2013) Recent progress in asymmetric Biginelli reaction. Mol Divers 17:389–407. https://doi.org/10.1007/s11030-013-9439-9

    Article  PubMed  CAS  Google Scholar 

  48. Li N, Chen X-H, Song J, Luo S-W, Fan W, Gong L-Z (2009) Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3, 3′-disubstituents of phosphoric acids. J Am Chem Soc 131:15301–15310. https://doi.org/10.1021/ja905320q

    Article  PubMed  CAS  Google Scholar 

  49. Guo Y, Gao Z, Meng X, Huang G, Zhong H, Yu H, Ding X, Tang H, Zou C (2017) Highly enantioselective Biginelli reaction of aliphatic aldehydes catalyzed by chiral phosphoric acids. Synlett 28:2041–2045. https://doi.org/10.1055/s-0036-1588853

    Article  CAS  Google Scholar 

  50. Uraguchi D, Ueki Y, Ooi T (2009) Chiral organic ion pair catalysts assembled through a hydrogen-bonding network. Science 326:120–123. https://doi.org/10.1126/science.1176758

    Article  PubMed  CAS  Google Scholar 

  51. Bella M, Schietroma DMS, Cusella PP, Gasperi T, Visca V (2009) Synergic asymmetric organocatalysis (SAOc) of Cinchona alkaloids and secondary amines in the synthesis of bicyclo [2.2.2] octan-2-ones. Chem Commun. https://doi.org/10.1039/b816550e

    Article  Google Scholar 

  52. Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type—a literature survey. Eur J Med Chem 35:1043–1052. https://doi.org/10.1016/S0223-5234(00)01189-2

    Article  PubMed  CAS  Google Scholar 

  53. Atwal KS, Rovnyak GC, O’Reilly BC, Schwartz J (1989) Substituted 1,4-dihydropyrimidines. Synthesis of selectively functionalized 2-hetero-1,4-dihydropyrimidines. J Org Chem 54:5898–5907. https://doi.org/10.1021/jo00286a020

    Article  CAS  Google Scholar 

  54. Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O’Reilly BC (1991) Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1, 2, 3, 4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J Med Chem 34:806–811. https://doi.org/10.1021/jm00106a048

    Article  PubMed  CAS  Google Scholar 

  55. Rovnyak GC, Kimball SD, Beyer B, Cucinotta G, DiMarco JD, Gougoutas J, Hedberg A, Malley M, McCarthy JP (1995) Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J Med Chem 38:119–129. https://doi.org/10.1021/jm00001a017

    Article  PubMed  CAS  Google Scholar 

  56. Hang Z, Zhu J, Lian X, Xu P, Yu H, Han S (2016) A highly enantioselective Biginelli reaction using self-assembled methanoproline-thiourea organocatalysts: asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines. Chem Commun 52:80–83. https://doi.org/10.1039/c5cc07880f

    Article  CAS  Google Scholar 

  57. Hang Z, Dai G, Yu H, Han S (2016) Highly enantioselective synthesis of the 6-isopropyl-3, 4-dihydropyrimidin-2(1H)-thiones via asymmetric catalytic Biginelli reactions. Curr Org Chem 20:2917–2925. https://doi.org/10.2174/1385272820666160411151148

    Article  CAS  Google Scholar 

  58. Yu H, Dai G, He QR, Tang JJ (2017) Enantioselective synthesis and evaluation of 4-styryldihydropyrimidin-2-thiones as anti-proliferative agents. Med Chem Res 26:787–795. https://doi.org/10.1007/s00044-017-1790-4

    Article  CAS  Google Scholar 

  59. Hang Z, Zhu J, Lian X, Xu P, Yu H, Han S (2015) A highly enantioselective Biginelli reaction using self-assembled methanoproline–thiourea organocatalysts: asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines. Chem Commun 52:80–83. https://doi.org/10.1039/C5CC07880F

    Article  CAS  Google Scholar 

  60. Titova Y, Fedorova O, Rusinov G, Vigorov A, Krasnov V, Murashkevich A, Charushin V (2015) Effect of nanosized TiO2–SiO2 covalently modified by chiral molecules on the asymmetric Biginelli reaction. Catal Today 241:270–274. https://doi.org/10.1016/j.cattod.2014.01.035

    Article  CAS  Google Scholar 

  61. Lynch B, Glennon JD, Tröltzsch C, Menyes U, Pursch M, Albert K (1997) A (−)-menthyl bonded silica phase for chiral separations: synthesis and solid state NMR characterization. Anal Chem 69:1756–1762. https://doi.org/10.1021/ac960717y

    Article  PubMed  CAS  Google Scholar 

  62. Fedorova O, Valova M, Titova Y, Ovchinnikova I, Grishakov A, Uimin M, Mysik A, Ermakov A, Rusinov G, Charushin V (2011) Catalytic effect of nanosized metal oxides in the Biginelli reaction. Kinet Catal 52:226–233

    Article  CAS  Google Scholar 

  63. Qu H, Li X, Mo F, Lin X (2013) Efficient synthesis of dihydropyrimidinones via a three-component Biginelli-type reaction of urea, alkylaldehyde and arylaldehyde. Beilstein J Org Chem 9:2846–2851. https://doi.org/10.3762/bjoc.9.320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Saha S, Moorthy JN (2010) Enantioselective organocatalytic Biginelli reaction: dependence of the catalyst on sterics, hydrogen bonding, and reinforced chirality. J Org Chem 76:396–402. https://doi.org/10.1021/jo101717m

    Article  PubMed  CAS  Google Scholar 

  65. Xu D-Z, Li H, Wang Y (2012) Highly enantioselective Biginelli reaction catalyzed by a simple chiral primary amine catalyst: asymmetric synthesis of dihydropyrimidines. Tetrahedron 68:7867–7872. https://doi.org/10.1016/j.tet.2012.07.027

    Article  CAS  Google Scholar 

  66. Fedorova OV, Titova YA, Vigorov AY, Toporova MS, Alisienok OA, Murashkevich AN, Krasnov VP, Rusinov GL, Charushin VN (2016) Asymmetric Biginelli reaction catalyzed by silicon, titanium and aluminum oxides. Catal Lett 1(46):493–498. https://doi.org/10.1007/s10562-015-1666-5

    Article  CAS  Google Scholar 

  67. Xin J, Chang L, Hou Z, Shang D, Liu X, Feng X (2008) An enantioselective Biginelli reaction catalyzed by a simple chiral secondary amine and achiral Brønsted acid by a dual-activation route. Chem Eur J 14:3177–3181. https://doi.org/10.1002/chem.200701581

    Article  PubMed  CAS  Google Scholar 

  68. Lacotte P, Buisson DA, Ambroise Y (2013) Synthesis, evaluation and absolute configuration assignment of novel dihydropyrimidin-2-ones as picomolar sodium iodide symporter inhibitors. Eur J Med Chem 62:722–727. https://doi.org/10.1016/j.ejmech.2013.01.043

    Article  PubMed  CAS  Google Scholar 

  69. Petrini M (2005) α-Amido sulfones as stable precursors of reactive N-acylimino derivatives. Chem Rev 105:3949–3977. https://doi.org/10.1021/cr050528s

    Article  PubMed  CAS  Google Scholar 

  70. Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis. Chem Rev 107:5713–5743. https://doi.org/10.1021/cr068373r

    Article  PubMed  CAS  Google Scholar 

  71. Steiner T (1997) Unrolling the hydrogen bond properties of C-H··· O interactions. Chem Commun. https://doi.org/10.1039/A603049A

    Article  Google Scholar 

  72. Lillo VJ, Saá JM (2016) Towards enzyme-like, sustainable catalysis: switchable, highly efficient asymmetric synthesis of enantiopure Biginelli dihydropyrimidinones or hexahydropyrimidinones. Chem Eur J 22:17182–17186. https://doi.org/10.1002/chem.201604433

    Article  PubMed  CAS  Google Scholar 

  73. Iglesias AL, Aguirre G, Somanathan R, Parra-Hake M (2004) New chiral Schiff base–Cu (II) complexes as cyclopropanation catalysts. Polyhedron 23:3051–3062. https://doi.org/10.1016/j.poly.2004.09.007

    Article  CAS  Google Scholar 

  74. Ausbun-Valdés C, González-Guerrero EE, Toscano RA (2007) Characterization and crystal structure of some Schiff ase copper (II) complexes derived from enantiomeric pairs of chiral amines. Allg Chem 633:1251–1256. https://doi.org/10.1021/jm00106a048

    Article  Google Scholar 

  75. Kamali M (2015) Asymmetric synthesis of dihydropyrimidines using chiral Schiff base copper(II) complex as a chiral catalyst. Int J ChemTech Res 8:536–541

    CAS  Google Scholar 

  76. Dubernet M, Duguet N, Colliandre L, Berini C, Helleboid S, Bourotte M, Daillet M, Maingot L, Daix S, Delhomel JF, Morin-Allory L, Routier S, Walczak R (2013) Identification of new nonsteroidal RORα ligands; Related structure-activity relationships and docking studies. ACS Med Chem Lett 4:504–508. https://doi.org/10.1021/ml300471d

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Shan Z, Hu X, Zhou Y, Peng X, Li Z (2010) A convenient approach to C2-Chiral 1,1,4,4-Tetrasubstituted Butanetetraols: direct alkylation or arylation of enantiomerically pure diethyl tartrates. Helv Chim Acta 93:497–503. https://doi.org/10.1002/hlca.200900274

    Article  CAS  Google Scholar 

  78. Hu X, Shan Z, Peng X, Li Z (2009) Convenient access to sterically hindered C 2 chiral 2,2,5,5-tetraphenyltetrahydrofuran-3,4-diols: intramolecular selective 1,4-cyclocondensation of (2R,3R)- and (2S,3S)-1,1,4,4-tetraphenylbutanetetraols. Tetrahedron Asymmetry 20:2474–2478. https://doi.org/10.1016/j.tetasy.2009.10.005

    Article  CAS  Google Scholar 

  79. Hu X, Zhang R, Xie J, Zhou Z, Shan Z (2017) Synthesis of a novel sterically hindered chiral cyclic phosphoric acid derived from l-tartaric acid and application to the asymmetric catalytic Biginelli reaction. Tetrahedron Asymmetry 28:69–74. https://doi.org/10.1016/j.tetasy.2016.11.014

    Article  CAS  Google Scholar 

  80. Lillo VJ, Mansilla J, Saá JM (2016) Organocatalysis by networks of cooperative hydrogen bonds: enantioselective direct Mannich addition to preformed arylideneureas. Angew Chem Int Ed 55:4312–4316. https://doi.org/10.1002/anie.201511555

    Article  CAS  Google Scholar 

  81. Baleizao C, Garcia H (2006) Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem Rev 106:3987–4043. https://doi.org/10.1021/jm00106a048

    Article  PubMed  CAS  Google Scholar 

  82. Frings M, Thomé I, Bolm C (2012) Synthesis of chiral sulfoximine-based thioureas and their application in asymmetric organocatalysis. Beilstein J Org Chem 8:1443–1451. https://doi.org/10.3762/bjoc.8.164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Frings M, Atodiresei I, Wang Y, Runsink J, Raabe G, Bolm C (2010) C1-symmetric aminosulfoximines in copper-catalyzed asymmetric vinylogous Mukaiyama Aldol reactions. Chem Eur J 16:4577–4587. https://doi.org/10.1002/chem.200903077

    Article  PubMed  CAS  Google Scholar 

  84. Langner M, Rémy P, Bolm C (2005) Highly modular synthesis of C1-symmetric aminosulfoximines and their use as ligands in copper-catalyzed asymmetric Mukaiyama-Aldol reactions. Chem Eur J 11:6254–6265. https://doi.org/10.1002/chem.200500497

    Article  PubMed  CAS  Google Scholar 

  85. Langner M, Bolm C (2004) C1-symmetric sulfoximines as ligands in copper-catalyzed asymmetric Mukaiyama-type Aldol reactions. Angew Chem Int Ed 43:5984–5987. https://doi.org/10.1002/anie.200460953

    Article  CAS  Google Scholar 

  86. Bolm C, Moll G, Kahmann JD (2001) Synthesis of pseudopeptides with sulfoximines as chiral backbone modifying elements. Chem Eur J 7:1118–1128. https://doi.org/10.1002/1521-3765(20010302)7:5

    Article  PubMed  CAS  Google Scholar 

  87. Yu H, Xu P, He H, Zhu J, Lin H, Han S (2017) Highly enantioselective Biginelli reactions using methanopyroline/thiourea-based dual organocatalyst systems: asymmetric synthesis of 4-substituted unsaturated aryl dihydropyrimidines. Tetrahedron Asymmetry 28:257–265. https://doi.org/10.1016/j.tetasy.2016.11.015

    Article  CAS  Google Scholar 

  88. Sameera WMC, Maeda S, Morokuma K (2016) Computational catalysis using the artificial force induced reaction method. Acc Chem Res 49:763–773. https://doi.org/10.1021/acs.accounts.6b00023

    Article  PubMed  CAS  Google Scholar 

  89. Hu X, Mao J, Sun Y, Chen H, Li H (2009) Acetylacetone–Fe catalyst modified by imidazole ionic compound and its application in aerobic oxidation of β-isophorone. Catal Commun 10:1908–1912. https://doi.org/10.1016/j.catcom.2009.06.024

    Article  CAS  Google Scholar 

  90. Karthikeyan P, Aswar SA, Muskawar PN, Bhagat PR, Senthil Kumar S (2013) Development and efficient 1-glycyl-3-methyl imidazolium chloride-copper(II) complex catalyzed highly enantioselective synthesis of 3, 4-dihydropyrimidin-2(1H)-ones. J Organomet Chem 723:154–162. https://doi.org/10.1016/j.jorganchem.2012.06.022

    Article  CAS  Google Scholar 

  91. Vishnevskii SG, Drapailo AB, Ruban AV, Pirozhenko VV, Shishkina SV, Shishkin OV, Kal’Chenko VI (2014) Synthesis and structure of [2-oxo(thioxo)tetrahydropyrimidin-4-yl]calix[4] arenes. Russ J Org Chem 50:571–580. https://doi.org/10.1134/S1070428014040228

    Article  CAS  Google Scholar 

  92. Stucchi M, Lesma G, Meneghetti F, Rainoldi G, Sacchetti A, Silvani A (2016) Organocatalytic asymmetric Biginelli-like reaction involving isatin. J Org Chem 81:1877–1884. https://doi.org/10.1021/acs.joc.5b02680

    Article  PubMed  CAS  Google Scholar 

  93. An D, Fan YS, Gao Y, Zhu ZQ, Zheng LY, Zhang SQ (2014) Highly enantioselective Biginelli reaction catalyzed by double axially chiral bisphosphorylimides. Eur J Org Chem 2014:301–306. https://doi.org/10.1002/ejoc.201301560

    Article  CAS  Google Scholar 

  94. Krivtsov I, Ilkaeva M, Avdin V, Zherebtsov D (2013) Properties and segregation stability of the composite silica-zirconia xerogels prepared via “acidic” and “basic” precipitation routes. J Non Cryst Solids 362:95–100. https://doi.org/10.1016/j.jnoncrysol.2012.11.011

    Article  CAS  Google Scholar 

  95. Krivtsov IV, Titova YA, Ilkaeva MV, Avdin VV, Fedorova OV, Khainakov SA, Garcia JR, Rusinov GL, Charushin VN (2014) Catalysts for enantioselective Biginelli reaction based on the composite silica-zirconia xerogels prepared using different zirconium sources. J Sol-Gel Sci Technol 69:448–452. https://doi.org/10.1007/s10971-013-3242-z

    Article  CAS  Google Scholar 

  96. Barbero M, Cadamuro S, Dughera S (2017) A Brønsted acid catalysed enantioselective Biginelli reaction. Green Chem 19:1529–1535. https://doi.org/10.1039/c6gc03274e

    Article  CAS  Google Scholar 

  97. Mahlau M, List B (2013) Asymmetric counteranion-directed catalysis: concept, definition, and applications. Angew Chem Int Ed 52:518–533. https://doi.org/10.1002/anie.201205343

    Article  CAS  Google Scholar 

  98. Guan Z, Chen YL, Yuan Y, Song J, Yang DC, Xue Y, He YH (2014) Earthworm is a versatile and sustainable biocatalyst for organic synthesis. PLoS ONE. https://doi.org/10.1371/journal.pone.0105284

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Research Council of Alzahra University. MMH is also appreciate the financial support granted by Iran National Science Foundation (INSF) under the given individual research chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid M. Heravi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heravi, M.M., Moradi, R., Mohammadkhani, L. et al. Current progress in asymmetric Biginelli reaction: an update. Mol Divers 22, 751–767 (2018). https://doi.org/10.1007/s11030-018-9841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9841-4

Keywords

  • Biginelli reaction
  • 3-4-Dihydropyrimidine-2-(1H)-ones
  • Heterocyclic compounds
  • Asymmetric reaction
  • Enantioselective reaction
  • Catalysis
  • Pyrimidines
  • Enantioselectivity
  • Stereoselectivity
  • MCRs