Skip to main content

Advertisement

Log in

Nucleophilic ring opening reactions of aziridines

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Aziridine ring opening reactions have gained tremendous importance in the synthesis of nitrogen containing biologically active molecules. During recent years, a great effort has been put forward by scientists toward unique bond construction methodologies via ring opening of aziridines. In this regard, a wide range of chiral metal- and organo-catalyzed desymmetrization reactions of aziridines have been reported with carbon, sulfur, oxygen, nitrogen, halogen, and other nucleophiles. In this review, an outline of methodologies adopted by a number of scientists during 2013–2017 for aziridine ring opening reactions as well as their synthetic applications is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90
Scheme 91
Scheme 92
Scheme 93
Scheme 94
Scheme 95
Scheme 96
Scheme 97
Scheme 98
Scheme 99
Scheme 100
Scheme 101
Scheme 102
Scheme 103
Scheme 104
Scheme 105
Scheme 106

Similar content being viewed by others

References

  1. Lu P (2010) Recent developments in regioselective ring opening of aziridines. Tetrahedron 66:2549–2560. https://doi.org/10.1016/j.tet.2010.01.077

    Article  CAS  Google Scholar 

  2. Faiz S, Zahoor AF (2016) Ring opening of epoxides with C-nucleophiles. Mol Divers 20:969–987. https://doi.org/10.1007/s11030-016-9686-7

    Article  PubMed  CAS  Google Scholar 

  3. Saddique FA, Zahoor AF, Faiz S, Naqvi SAR, Usman M, Ahmad M (2016) Recent trends in ring opening of epoxides by amines as nucleophiles. Synth Commun 46:831–868. https://doi.org/10.1080/00397911.2016.1170148

    Article  CAS  Google Scholar 

  4. Jung J-H, Ha H-J (2015) New perspective on the synthesis of aziridine. Bull Korean Chem Soc 36:1741–1742. https://doi.org/10.1002/bkcs.10368

    Article  CAS  Google Scholar 

  5. Kim Y, Ha H-J, Yun H, Lee BK, Lee WK (2006) Ring opening of 2-acylaziridines by acid chlorides. Tetrahedron 62:8844–8849. https://doi.org/10.1016/j.tet.2006.06.025

    Article  CAS  Google Scholar 

  6. Baruah B, Deuri S, Phukan P (2014) Reactivity and regioselectivity in the ring opening of 2-substituted non-activated aziridines: a density functional theory based analysis. Comput Theor Chem 1027:197–202. https://doi.org/10.1016/j.comptc.2013.11.005

    Article  CAS  Google Scholar 

  7. Giovanni A, Musio B, Degennaro L, Falcicchio A, Nagaki A, Yoshida J-I, Luisi R (2013) Synthesis of 1,2,3,4-tetrahydroisoquinolines by microreactor-mediated thermal isomerization of laterally lithiated arylaziridines. Chem Eur J 19:1872–1876. https://doi.org/10.1002/chem.201203533

    Article  CAS  Google Scholar 

  8. Ghorai MK, Nanaji Y, Yadav AK (2011) Ring opening/C–N cyclization of activated aziridines with carbon nucleophiles: highly diastereo- and enantioselective synthesis of tetrahydroquinolines. Org Lett 13:4256–4259. https://doi.org/10.1021/ol2016077

    Article  PubMed  CAS  Google Scholar 

  9. Cardoso AL, Nunes RMD, Arnaut LG, Pinho e Melo TMVD (2011) Synthesis of pyrroles in supercritical carbon dioxide: formal \([3+2]\) cycloaddition of 2-benzoyl-aziridines and allenoates. Synthesis 21:3516–3522. https://doi.org/10.1055/s-0030-1260209

    Article  CAS  Google Scholar 

  10. Davies PW, Martin N (2011) An efficient and selective synthesis of 2,5-substituted pyrroles by gold-catalysed ring expansion of alkynyl aziridines. J Organomet Chem 696:159–164. https://doi.org/10.1016/j.jorganchem.2010.08.040

    Article  CAS  Google Scholar 

  11. Lowe MA, Ostovar M, Ferrini S, Chen CC, Lawrence PG, Fontana F, Calabrese AA, Aggarwal VK (2011) Palladium-mediated annulation of vinyl aziridines with Michael acceptors: stereocontrolled synthesis of substituted pyrrolidines and its application in a formal synthesis of (–)-\({\upalpha }\)-kainic acid. Angew Chem Int Ed 50:6370–6374. https://doi.org/10.1002/anie.201101389

    Article  CAS  Google Scholar 

  12. Li X, Yang X, Chang H, Li Y, Ni B, Wei W (2011) A new and efficient procedure for \(\text{ Bi }(\text{ OTf })_{3}\)-promoted \([3+2]\) cycloaddition of \(N\)-tosylaziridines to yield imidazolines. Eur J Org Chem 2011:3122–3125. https://doi.org/10.1002/ejoc.201100270

    Article  CAS  Google Scholar 

  13. Maeda R, Ishibashi R, Kamaishi R, Hirotaki K, Furuno H, Hanamoto T (2011) \(\text{ AgSbF }_{6}\)-Promoted cycloaddition reaction of 2-trifluoromethyl-\(N\)-tosylaziridine with aldehydes. Org Lett 13:6240–6243. https://doi.org/10.1021/ol202697y

    Article  PubMed  CAS  Google Scholar 

  14. Shintani R, Ikehata K, Hayashi T (2011) Synthesis of nine-membered azlactones by palladium-catalyzed ring-expansion of \(\upgamma \)-methylidene-\({\updelta }\)-valerolactones with aziridines. J Org Chem 76:4776–4780. https://doi.org/10.1021/jo2006158

    Article  PubMed  CAS  Google Scholar 

  15. Wurz RP, Charette AB (2005) Doubly activated cyclopropanes as synthetic precursors for the preparation of 4-nitro- and 4-cyano-dihydropyrroles and pyrroles. Org Lett 7:2313–2316. https://doi.org/10.1021/ol050442l

    Article  PubMed  CAS  Google Scholar 

  16. Liu C, Shi C, Mao F, Xu Y, Liu J, Wei B, Zhu J, Xiang M, Li J (2014) Discovery of new imidazole derivatives containing the 2,4-dienone motif with broad-spectrum antifungal and antibacterial activity. Molecules 19:15653–15672. https://doi.org/10.3390/molecules191015653

    Article  PubMed  CAS  Google Scholar 

  17. Pandit N, Singla RK, Shrivastava B (2012) Current updates on oxazolidinone and its significance. Int J Med Chem 2012:1–24. https://doi.org/10.1155/2012/159285

    Article  CAS  Google Scholar 

  18. Tirotta I, Fifer NL, Eakins J, Hutton CA (2013) Synthesis of tryptophans by Lewis acid promoted ring opening of aziridine-2-carboxylates: optimization of protecting group and Lewis acid. Tetrahedron Lett 54:618–620. https://doi.org/10.1016/j.tetlet.2012.11.139

    Article  CAS  Google Scholar 

  19. Ohmatsu K, Ando Y, Ooi T (2013) Asymmetric substitution at the tetrasubstituted chiral carbon: catalytic ring opening alkylation of racemic 2,2-disubstituted aziridines with 3-substituted oxindoles. J Am Chem Soc 135:18706–18709. https://doi.org/10.1021/ja411647x

    Article  PubMed  CAS  Google Scholar 

  20. Yang D, Wang L, Han F, Li D, Zhao D, Cao Y, Ma Y, Kong W, Sun Q, Wang R (2014) Highly enantioselective ring opening reactions of aziridine with indole and its application in the building of \(\text{ C }_{3}\)-halogenated-pyrroloindolines. Chem Eur J 20:1–7. https://doi.org/10.1002/chem.201404354

    Article  CAS  Google Scholar 

  21. Kurosato F, Ishikawa T, Yamada Y, Hanamoto T (2015) Convenient synthesis of \(N\)-tosyl-2-(difluoromethyl)aziridine and its application to the preparation of difluoromethyl-\(\upbeta \)-tryptamine analogues. Synlett 26:1827–1830. https://doi.org/10.1055/s-0034-1381008

    Article  CAS  Google Scholar 

  22. Hirotaki K, Yamada Y, Hanamoto T (2014) Diethylzinc-promoted synthesis of trifluoromethyl-containing tryptamine analogues from indoles and 2-trifluromethyl-\(N\)-(4-toluenesulfonyl)-aziridine. Asian J Org Chem 3:285–288. https://doi.org/10.1002/ajoc.201300286

    Article  CAS  Google Scholar 

  23. Hirotaki K, Yamaguchi K, Hanamoto T (2016) Base-free synthesis of \(\text{ CF }_{3}\)-containing \(\upbeta \)-tryptamine derivatives from \(N\text{-nosyl }-2\text{-CF }_{3}\)-aziridine and indoles. Synlett 27:2846–2850. https://doi.org/10.1055/s-0036-1588601

    Article  CAS  Google Scholar 

  24. Noji T, Okano K, Tokuyama H (2015) A concise total synthesis of (–)-indolactam V. Tetrahedron 71:3833–3837. https://doi.org/10.1016/j.tet.2015.04.015

    Article  CAS  Google Scholar 

  25. Wang L, Yang D, Li D, Wang R (2015) Catalytic enantioselective ring opening and ring closing reactions of 3-isothiocyanato oxindoles and \(N\)-(2-picolinoyl)aziridines. Org Lett 17:3004–3007. https://doi.org/10.1021/acs.orglett.5b01291

    Article  PubMed  CAS  Google Scholar 

  26. Wang L, Li D, Yang D, Wang K, Wang J, Wang P, Su W, Wang R (2016) Catalytic asymmetric ring opening reactions of aziridines with 3-aryl-oxindoles. Chem Asian J 11:691–695. https://doi.org/10.1002/asia.201501369

    Article  PubMed  CAS  Google Scholar 

  27. Kidd J, Maiden K, Morgan JB (2016) Synthesis of \(\upbeta \)-substituted tryptamines by regioselective ring opening of aziridines. Tetrahedron 72:3802–3807. https://doi.org/10.1016/j.tet.2016.03.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Arena G, Chen C, Leonori D, Aggarwal VK (2013) Concise synthesis of (\(+\))-allo-kainic acid via \(\text{ MgI }_{2}\)-mediated tandem aziridine ring opening-formal \([3+2]\) cycloaddition. Org Lett 15:4250–4253. https://doi.org/10.1021/ol4020333

    Article  PubMed  CAS  Google Scholar 

  29. Pankova AS, Kuznetsov MA (2014) Synthesis and thermal transformations of spiro-fused \(N\)-phthalimidoaziridines. Tetrahedron Lett 55:2499–2503. https://doi.org/10.1016/j.tetlet.2014.03.014

    Article  CAS  Google Scholar 

  30. Zhou M-B, Song R-J, Li J-H (2014) Hexafluoroantimonic acid catalysis: formal \([3+2+2]\) cycloaddition of aziridines with two alkynes. Angew Chem Int Ed 53:4196–4199. https://doi.org/10.1002/anie.201310944

    Article  CAS  Google Scholar 

  31. Feng J-J, Lin T-Y, Zhu C-Z, Wang H, Wu H-H, Zhang J (2016) The divergent synthesis of nitrogen heterocycles by rhodium(I)-catalyzed intermolecular cycloadditions of vinyl aziridines and alkynes. J Am Chem Soc 138:2178–2181. https://doi.org/10.1021/jacs.6b00386

    Article  PubMed  CAS  Google Scholar 

  32. Li D, Wang Y, Wang L, Wang J, Wang P, Wang K, Lin L, Liu D, Jiang X, Yang D (2016) Simple magnesium catalyst mediated \(\upgamma \)-butyrolactams in desymmetrization of meso-aziridines. Chem Commun 52:9640–9643. https://doi.org/10.1039/c6cc02877b

    Article  CAS  Google Scholar 

  33. Ghorai MK, Tiwari DP, Jain N (2013) Lewis acid catalyzed \(\text{ SN }_{2}\)-type ring opening of \(N\)-activated aziridines with electron rich arenes/heteroarenes. J Org Chem 78:7121–7130. https://doi.org/10.1021/jo401028j

    Article  PubMed  CAS  Google Scholar 

  34. Lee H, Kim JH, Lee WK, Cho J, Nam W, Lee J, Ha H-J (2013) Highly stereoselective directed reactions and an efficient synthesis of azafuranose from a chiral aziridine. Org Biomol Chem 11:3629–3634. https://doi.org/10.1039/c3ob27390c

    Article  PubMed  CAS  Google Scholar 

  35. Li X, Yu S, Wang F, Wan B, Yu X (2013) Rhodium(III)-catalyzed C–C coupling between arenes and aziridines by C–H activation. Angew Chem Int Ed 52:2577–2580. https://doi.org/10.1002/anie.201209887

    Article  CAS  Google Scholar 

  36. Gao K, Paira R, Yoshikai N (2014) Cobalt-catalyzed ortho-C–H alkylation of 2-arylpyridines via ring opening of aziridines. Adv Synth Catal 356:1486–1490. https://doi.org/10.1002/adsc.201400049

    Article  CAS  Google Scholar 

  37. Takashi M, Suzuki N, Ishikawa T (2013) Enantioselective formal synthesis of (–)-podophyllotoxin from (\(2S\),\(3R\))-3-arylaziridine-2-carboxylate. J Org Chem 78:3250–3261. https://doi.org/10.1021/jo400147f

    Article  CAS  Google Scholar 

  38. Chaudhari P, Bari S (2015) An efficient synthesis of \(N\)-sulphonyl \(\upbeta \)-arylmethylalaninates from serine via ring opening of \(N\)-sulphonyl aziridine-2 carboxylate. Synth Commun 45:391–402. https://doi.org/10.1080/00397911.2014.965328

    Article  CAS  Google Scholar 

  39. Xing S, Ren J, Wang K, Cui H, Li W, Yan H (2015) Lewis acid promoted three-component reactions of aziridines, arenes and aldehydes: an efficient and diastereoselective synthesis of cis-1,4-disubstituted tetrahydroisoquinolines. Tetrahedron 71:6290–6299. https://doi.org/10.1016/j.tet.2015.06.013

    Article  CAS  Google Scholar 

  40. Yang D, Wang L, Han F, Li D, Zhao D, Wang R (2015) Intermolecular enantioselective dearomatization reaction of \(\upbeta \)-naphthol using meso-aziridine: a bifunctional in situ generated magnesium catalyst. Angew Chem Int Ed 54:1–6. https://doi.org/10.1002/anie.201410257

    Article  CAS  Google Scholar 

  41. Yoshiki M, Ishibashi R, Yamada Y, Hanamoto T (2014) \(\text{ TiF }_{4}\)-mediated regioselective cycloaddition of 2-(trifluoromethyl)-\(N\)-(tosylaziridine) to nitriles. Org Lett 16:5509–5511. https://doi.org/10.1021/ol502331a

    Article  PubMed  CAS  Google Scholar 

  42. Lee J, Lee JE, Ha H-J, Son SI, Lee WK (2015) \(N\)-Methylative aziridine ring opening: asymmetric synthesis of hygroline, pseudohygroline, and hygrine. Tetrahedron Lett 56:856–858. https://doi.org/10.1016/j.tetlet.2014.12.133

    Article  CAS  Google Scholar 

  43. Ghorai MK, Tiwari DP (2013) Enantioselective synthesis of 4,5-dihydropyrroles via domino ring opening cyclization (DROC) of \(N\)-activated aziridines with malononitrile. J Org Chem 78:2617–2625. https://doi.org/10.1021/jo302815m

    Article  PubMed  CAS  Google Scholar 

  44. Rai A, Yadav LDS (2013) An organocatalytic approach to stereoselective synthesis of 2-hydroxyazetidines and 2-hydroxypyrrolidines. Tetrahedron Lett 54:3127–3131. https://doi.org/10.1016/j.tetlet.2013.04.013

    Article  CAS  Google Scholar 

  45. Xu Y, Kaneko K, Kanai M, Shibasaki M, Matsunaga S (2014) Regiodivergent kinetic resolution of terminal and internal rac-aziridines with malonates under dinuclear Schiff base catalysis. J Am Chem Soc 136:9190–9194. https://doi.org/10.1021/ja5039165

    Article  PubMed  CAS  Google Scholar 

  46. Jarvis AN, McLaren AB, Osborn HMI, Sweeney J (2013) Preparation and ring opening reactions of \(N\)-diphenylphosphinyl vinyl aziridines. Beilstein J Org Chem 9:852–859. https://doi.org/10.3762/bjoc.9.98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nielsen DK, Huang C-Y, Doyle AG (2013) Directed nickel-catalyzed Negishi cross coupling of alkyl aziridines. J Am Chem Soc 135:13605–13609. https://doi.org/10.1021/ja4076716

    Article  PubMed  CAS  Google Scholar 

  48. Pan X, Li X, Lu Q, Yu W, Li W, Zhang Q, Deng F, Liu F (2013) Efficient synthesis of sitagliptin phosphate, a novel DPP-IV inhibitor, via a chiral aziridine intermediate. Tetrahedron Lett 54:6807–6809. https://doi.org/10.1016/j.tetlet.2013.09.136

    Article  CAS  Google Scholar 

  49. Yoon D-H, Ji M-K, Ha H-J, Park J, Kang P, Lee WK (2013) Synthesis and biological activities of tyroscherin analogs. Bull Korean Chem Soc 34:1899–1902. https://doi.org/10.5012/bkcs.2013.34.6.1899

    Article  CAS  Google Scholar 

  50. Aaseng JE, Gautun OR (2014) Synthesis of (\(S\))-2-amino-7-methoxytetralin and isoindolo[1,2-a] isoquinolinone derivatives from \(L\)-aspartic acid. Tetrahedron 70:5057–5063. https://doi.org/10.1016/j.tet.2014.06.008

    Article  CAS  Google Scholar 

  51. Jensen KL, Standley EA, Jamison TF (2014) Highly regioselective nickel-catalyzed cross coupling of \(N\)-tosylaziridines and alkylzinc reagents. J Am Chem Soc 136:11145–11152. https://doi.org/10.1021/ja505823s

    Article  PubMed  CAS  Google Scholar 

  52. Kennedy MD, Bailey SJ, Wales SM, Keller PA (2015) Enantiopure trans-4,5-disubstituted 2-imidazolidinones via copper(I)-catalyzed ring opening of \(1,1^{\prime }\)-diBoc-2,\(2^{\prime }\)-biaziridine with Grignard reagents. J Org Chem 80:5992–5998. https://doi.org/10.1021/acs.joc.5b00832

    Article  PubMed  CAS  Google Scholar 

  53. Cao Y-M, Zhang F-T, Shen F-F, Wang R (2013) Catalytic enantioselective ring opening reaction of meso-aziridines with \(\upalpha \)-isothiocyanato imides. Chem Eur J 19:9476–9480. https://doi.org/10.1002/chem.201300297

    Article  PubMed  CAS  Google Scholar 

  54. Nakamura S, Ohara M, Koyari M, Hayashi M, Hyodo K, Nabisaheb NR, Funahashi Y (2014) Desymmetrization of meso-aziridines with TMSNCS using metal salts of novel chiral imidazoline-phosphoric acid catalysts. Org Lett 16:4452–4455. https://doi.org/10.1021/ol501990t

    Article  PubMed  CAS  Google Scholar 

  55. Bhattacharyya A, Kavitha CV, Ghorai MK (2016) Stereospecific synthesis of 2-iminothiazolidines via domino ring opening cyclization of activated aziridines with aryl- and alkyl isothiocyanates. J Org Chem 81:6433–6443. https://doi.org/10.1021/acs.joc.6b01551

    Article  PubMed  CAS  Google Scholar 

  56. Liew SK, He Z, Denis JDS, Yudin AK (2013) Stereocontrolled synthesis of 1,2- and 1,3-diamine building blocks from aziridine aldehyde dimers. J Org Chem 78:11637–11645. https://doi.org/10.1021/jo401489q

    Article  PubMed  CAS  Google Scholar 

  57. Denis JDS, Liew SK, Scully CCG, Yudin AK (2017) Activation of alkynylzinc reagents by a hemiaminal-driven catalytic microenvironment. Eur J Org Chem 2017:419–423. https://doi.org/10.1002/ejoc.201601554

    Article  CAS  Google Scholar 

  58. Aleksis R, Jaudzems K, Ivanova J, Žalubovskis R, Kalvinsh I, Liepinsh E (2014) Reactivity of aziridine-2-carboxamide (leakadine) with nucleophiles in aqueous solutions. Chem Heterocycl Compd 49:1589–1598. https://doi.org/10.1007/s10593-014-1410-x

    Article  CAS  Google Scholar 

  59. Hajibabaei K, Zali-Boeini H (2014) Zinc chloride catalyzed ring opening of \(N\)-arylsulfonyl aziridines by thioamides: a new approach to the synthesis of amidines. Synlett 25:2044–2048. https://doi.org/10.1055/s-0034-1378376

    Article  CAS  Google Scholar 

  60. Cytlak T, Saweliew M, Kubicki M, Koroniaka H (2015) Synthesis of trifluoromethyl \(\gamma \)-aminophosphonates by nucleophilic aziridine ring opening. Org Biomol Chem 13:10050–10059. https://doi.org/10.1039/c5ob01411e

    Article  PubMed  CAS  Google Scholar 

  61. Sayyad M, Nanaji Y, Ghorai MK (2015) A synthetic route to 2-alkyl indoles via thiophenol-mediated ring opening of \(N\)-tosylaziridines followed by copper powder-mediated C–N cyclization/aromatization. J Org Chem 80:12659–12667. https://doi.org/10.1021/acs.joc.5b02251

    Article  PubMed  CAS  Google Scholar 

  62. Vale JR, Siopa F, Branco PS, Afonso AM (2016) Ring opening of 6-azabicyclo[3.1.0]hex-3-en-2-ols in water under mild conditions. Eur J Org Chem 2016:2048–2053. https://doi.org/10.1002/ejoc.201501468

    Article  CAS  Google Scholar 

  63. Chawla R, Singh AK, Yadav LDS (2013) Highly regioselective ring opening of aziridines with arenesulfinates on water: a facile access to \(\upbeta \)-amino/vinyl sulfones. Tetrahedron 69:1720–1724. https://doi.org/10.1016/j.tet.2012.12.028

    Article  CAS  Google Scholar 

  64. Sureshkumar D, Gunasundari T, Chandrasekaran S (2015) Tandem aziridine ring opening-disulfide formation–reduction–Michael addition in one-pot mediated by tetrathiomolybdate. Tetrahedron 71:7267–7281. https://doi.org/10.1016/j.tet.2015.04.003

    Article  CAS  Google Scholar 

  65. Ji F, Lv M-F, Yi W-B, Caia C (2013) Synthesis of 1,4-benzoxazepine derivatives via a novel domino aziridine ring opening and isocyanide-insertion reaction. Adv Synth Catal 355:3401–3406. https://doi.org/10.1002/adsc.201300650

    Article  CAS  Google Scholar 

  66. Wang S, Chai Z, Zhou S, Wang S, Zhu X, Wei Y (2013) A novel Lewis acid catalyzed \([3+3]\)-annulation strategy for the syntheses of tetrahydro-\(\upbeta \)-carbolines and tetrahydroisoquinolines. Org Lett 15:2628–2631. https://doi.org/10.1021/ol4008525

    Article  PubMed  CAS  Google Scholar 

  67. Li J, Liao Y, Zhang Y, Liu X, Lin L, Feng X (2014) Chiral magnesium(II)-catalyzed asymmetric ring opening of meso-aziridines with primary alcohols. Chem Commun 50:6672–6674. https://doi.org/10.1039/c4cc02206h

    Article  CAS  Google Scholar 

  68. Kelley BT, Carroll P, Joullie MM (2014) Possible reason for the unusual regioselectivity in nucleophilic ring opening of trisubstituted aziridines under mildly basic conditions. J Org Chem 79:5121–5133. https://doi.org/10.1021/jo5006685

    Article  PubMed  CAS  Google Scholar 

  69. Sun H, Huang B, Lin R, Yang C, Xia W (2015) Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines. Beilstein J Org Chem 11:524–529. https://doi.org/10.3762/bjoc.11.59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kang O-Y, Shin M-R, Kang H-Y (2016) Divergent synthesis of diastereomeric sphingosines from a chiral aziridine. Bull Korean Chem Soc 37:1095–1104. https://doi.org/10.1002/bkcs.10830

    Article  CAS  Google Scholar 

  71. Zhang S, Shan C, Zhang S, Yuan L, Wang J, Tung C-H, Xing L-B, Xu Z (2016) Breaking aziridines to construct morpholines with a gold(I)-catalyzed tandem ring opening and cycloisomerization reaction. Org Biomol Chem 14:10973–10980. https://doi.org/10.1039/c6ob02284g

    Article  PubMed  CAS  Google Scholar 

  72. Chavan SP, Khairnar LB, Pawar KP, Chavan PN, Kawale SA (2015) Enantioselective syntheses of (\(R\))-pipecolic, (\(2R\),\(3R\))-3-hydroxypipecolic acid, \(\upbeta \)-(\(+\))-conhydrine and (–)-swainsonine using aziridine derived common chiral synthon. RSC Adv 5:50580–50590. https://doi.org/10.1039/c5ra06429e

    Article  CAS  Google Scholar 

  73. Ghosal NC, Santra S, Zyryanov GV, Hajra A, Majee A (2016) Conversion of aziridines to oxazolidines through geminal difunctionalization of vinyl arenes or by tandem ring opening/closing reaction of aziridine itself. Tetrahedron Lett 57:3551–3555. https://doi.org/10.1016/j.tetlet.2016.06.119

    Article  CAS  Google Scholar 

  74. Samimi HA, Mostafavi A, Farsani MR (2015) \(K_{5}{[\text{ PW }}_{11}{\text{ ZnO }}_{39}{]}\cdot {23\text{ H }}_{2}\text{ O }\)-Catalyzed acylation/ring expansion of ketoaziridines in a single pot: a new regio- and stereo-selective route for the synthesis of oxazolines. J Iran Chem Soc 12:2031–2035. https://doi.org/10.1007/s13738-015-0678-9

    Article  CAS  Google Scholar 

  75. Zhang F, Chang H, Wei W (2015) KOH-oriented ring openings of \(N\)-tosylaziridines with carboxylic acids in DMSO. J Heterocycl Chem 52:284–295. https://doi.org/10.1002/jhet.1962

    Article  CAS  Google Scholar 

  76. Mukherjee M, Zhou Y, Gupta AK, Guan Y, Wulff WD (2014) A general synthesis of sphinganines through multicomponent catalytic asymmetric aziridination. Eur J Org Chem 2014:1386–1390. https://doi.org/10.1002/ejoc.201301766

    Article  CAS  Google Scholar 

  77. Tabarki MA, Besbes R (2014) Regioselective ring opening of \(\upbeta \)-phenylglycidate and aziridine-2-carboxylates with \(N\)-alkylhydroxylamines: synthesis of isoxazolidinones. Tetrahedron 70:1060–1064. https://doi.org/10.1016/j.tet.2013.12.052

    Article  CAS  Google Scholar 

  78. Pathipati SR, Singh V, Eriksson L, Selander N (2015) Lewis acid catalyzed annulation of nitrones with oxiranes, aziridines, and thiiranes. Org Lett 17:4506–4509. https://doi.org/10.1021/acs.orglett.5b02195

    Article  PubMed  CAS  Google Scholar 

  79. O’Brien K, ó Proinsias K, Kelleher F (2013) Synthesis of orthogonally protected azalanthionines (lanazanines) by sequential ring opening of \(N\)-substituted aziridine 2-carboxylates. Tetrahedron Lett 54:2395–2397. https://doi.org/10.1016/j.tetlet.2013.02.096

    Article  CAS  Google Scholar 

  80. O’Brien K, ó Proinsias K, Kelleher F (2014) Studies on the synthesis of orthogonally protected azalanthionines, and of routes towards \(\upbeta \)-methyl azalanthionines, by ring opening of \(N\)-activated aziridine-2-carboxylates. Tetrahedron 70:5082–5092. https://doi.org/10.1016/j.tet.2014.06.011

    Article  CAS  Google Scholar 

  81. Peruncheralathan S, Aurich S, Teller H, Schneider C (2013) The Ti-BINOLate-catalyzed, enantioselective ring opening of meso-aziridines with amines. Org Biomol Chem 11:2787–2803. https://doi.org/10.1039/c3ob40222c

    Article  PubMed  CAS  Google Scholar 

  82. Waki M, Katagiri T, Matsuno K, Miyachi H (2014) Synthesis of \(\upbeta \)-amino-\(\upalpha \)-trifluoromethyl-\(\upalpha \)-amino acids exhibiting intramolecular interaction of \(\text{ CF }_{3}\) with \(\text{ NH }_{\beta }\). Tetrahedron Lett 55:6915–6918. https://doi.org/10.1016/j.tetlet.2014.10.107

    Article  CAS  Google Scholar 

  83. Ghorai MK, Shahi CK, Bhattacharyya A, Sayyad M, Mal A, Wani IA, Chauhan N (2015) Syntheses of tetrahydrobenzodiazepines via \(\text{ SN }_{2}\)-type ring opening of activated aziridines with 2-bromobenzylamine followed by copper-powder-mediated C–N bond formation. Asian J Org Chem 4:1103–1111. https://doi.org/10.1002/ajoc.201500224

    Article  CAS  Google Scholar 

  84. Isobe T, Oriyama T (2016) Ring opening reaction of aziridines with amines under the influence of dimethyl sulfoxide. Tetrahedron Lett 57:2849–2852. https://doi.org/10.1016/j.tetlet.2016.05.044

    Article  CAS  Google Scholar 

  85. Loh JK, Asad N, Samarakoon TB, Hanson PR (2015) Modular, one-pot, sequential aziridine ring opening-\(\text{ S }_{N}\text{-Ar }\) strategy to 7-, 10, and 11-membered benzo-fused sultams. J Org Chem 80:9926–9941. https://doi.org/10.1021/acs.joc.5b01429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chiang L-L, Tseng I-J, Lin P-Y, Sheu S-Y, Lin C-T, Hsieh Y-H, Lin Y-J, Chen H-L, Lin M-H (2016) Synthesis of canthardin sulfanilamides and their acid anhydride analogues via a ring opening reaction of activated aziridines and their associated pharmacological effects. Molecules 21:100–111. https://doi.org/10.3390/molecules21010100

    Article  PubMed  CAS  Google Scholar 

  87. Kalow JA, Doyle AG (2013) Enantioselective fluoride ring opening of aziridines enabled by cooperative Lewis acid catalysis. Tetrahedron 69:5702–5709. https://doi.org/10.1016/j.tet.2013.01.062

    Article  CAS  Google Scholar 

  88. Li X, Sun Z-Q, Chang H-H, Wei W-L (2014) Highly efficient regioselective ring openings of \(N\)-tosylaziridines to haloamines using ferric (III) halides. Chin Chem Lett 25:1174–1178. https://doi.org/10.1016/j.cclet.2014.03.033

    Article  CAS  Google Scholar 

  89. Park H, Yoon D-H, Ha H-J, Son SI, Lee WK (2014) Asymmetric synthesis of fluoroamines from chiral aziridines. Bull Korean Chem Soc 35:699–700. https://doi.org/10.5012/bkcs.2014.35.3.699

    Article  CAS  Google Scholar 

  90. Nonn M, Kiss L, Haukka M, Fustero S, Fülöp F (2015) A novel and selective fluoride opening of aziridines by XtalFluor-E. Synthesis of fluorinated diamino acid derivatives. Org Lett 17:1074–1077. https://doi.org/10.1021/acs.orglett.5b00182

    Article  PubMed  CAS  Google Scholar 

  91. Jiang M-L, Meng Y-J, Xiong W-Y, Xu L (2016) Construction of functionalized ABEF ring system of \(\text{ C }_{20}\)-diterpenoid alkaloid racemulosine. Tetrahedron Lett 57:1610–1612. https://doi.org/10.1016/j.tetlet.2016.02.110

    Article  CAS  Google Scholar 

  92. Lugiņina J, Uzuleņa J, Posevins D, Turks M (2016) Ring opening of carbamate-protected aziridines and azetidines in liquid sulfur dioxide. Eur J Org Chem 2016:1760–1771. https://doi.org/10.1002/ejoc.201600141

    Article  CAS  Google Scholar 

  93. Chen Y, Sun X, Wu N, Li J, Jin S, Zhong Y, Liu Z, Rogachev A, Chong H-S (2016) Synthetic and theoretical investigation on the one-pot halogenation of \(\upbeta \)-amino alcohols and nucleophilic ring opening of aziridinium ions. Org Biomol Chem 14:920–939. https://doi.org/10.1039/c5ob01692d

    Article  PubMed  CAS  Google Scholar 

  94. Zhao Y-N, Yang Z-Z, Luo S-H, He L-N (2013) Design of task-specific ionic liquids for catalytic conversion of \(\text{ CO }_{2}\) with aziridines under mild conditions. Catal Today 200:2–8. https://doi.org/10.1016/j.cattod.2012.04.006

    Article  CAS  Google Scholar 

  95. Ren W-M, Liu Y, Lu X-B (2014) Bifunctional aluminum catalyst for \(\text{ CO }_{2}\) fixation: regioselective ring opening of three-membered heterocyclic compounds. J Org Chem 79:9771–9777. https://doi.org/10.1021/jo501926p

    Article  PubMed  CAS  Google Scholar 

  96. Takehiro Y, Hirotaki K, Takeshita C, Furuno H, Hanamoto T (2013) Regioselective ring opening reaction of 2-trifluoromethyl-\(N\)-tosylaziridine with some nucleophiles under basic conditions. Tetrahedron 69:7448–7454. https://doi.org/10.1016/j.tet.2013.06.044

    Article  CAS  Google Scholar 

  97. Dolfen J, Kenis S, Hecke KV, Kimpe ND, D’hooghe M (2014) Selective synthesis of functionalized trifluoromethylated pyrrolidines, piperidines, and azepanes starting from 1-tosyl-2-(trifluoromethyl)aziridine. Chem Eur J 20:10650–10653. https://doi.org/10.1002/chem.201304759

    Article  PubMed  CAS  Google Scholar 

  98. Moens M, Kimpe ND, D’hooghe M (2014) Selective synthesis of cis- and trans-2-methyl/phenyl-3-(trifluoromethyl)aziridines and their regio- and stereospecific ring opening. J Org Chem 79:5558–5568. https://doi.org/10.1021/jo5007448

    Article  PubMed  CAS  Google Scholar 

  99. Ghorai MK, Nanaji Y (2013) Synthetic route to chiral indolines via ring opening/C–N cyclization of activated 2-haloarylaziridines. J Org Chem 78:3867–3878. https://doi.org/10.1021/jo400287a

    Article  PubMed  CAS  Google Scholar 

  100. Ji M-K, Hertsen D, Yoon D-H, Eum H, Goossens H, Waroquier M, Speybroeck VV, D’hooghe M, Kimpe ND, Ha H-H (2014) Nucleophile-dependent regio- and stereoselective ring opening of 1-azoniabicyclo [3.1.0] hexane tosylate. Chem Asian J 9:1060–1067. https://doi.org/10.1002/asia.201301551

    Article  PubMed  CAS  Google Scholar 

  101. Yoshida M, Mizuguchi T, Namba K (2014) One-pot synthesis of tri- and tetrasubstituted pyridines by sequential ring opening/cyclization/oxidation of \(N\)-arylmethyl 3-aziridinylpropiolate esters. Angew Chem Int Ed 53:14550–14554. https://doi.org/10.1002/anie.201409015

    Article  CAS  Google Scholar 

  102. Matsukawa S, Takahashi H, Harada T (2013) TBD-catalyzed ring opening of aziridines with silylated nucleophiles. Synth Commun 43:406–414. https://doi.org/10.1080/00397911.2011.601839

    Article  CAS  Google Scholar 

  103. Matsukawa S, Mouri Y (2015) A mild and regioselective ring opening of aziridines with acid anhydride using TBD or PS-TBD as a catalyst. Molecules 20:18482–18495. https://doi.org/10.3390/molecules201018482

    Article  PubMed  CAS  Google Scholar 

  104. Bakkali-Hassani C, Rieger E, Vignolle J, Wurm FR, Carlotti S, Taton D (2016) The organocatalytic ring opening polymerization of \(N\)-tosyl aziridines by an \(N\)-heterocyclic carbene. Chem Commun 52:9719–9722. https://doi.org/10.1039/c6cc04323b

    Article  CAS  Google Scholar 

  105. Ghosal NC, Santra S, Das S, Hajra A, Zyryanov GV, Majee A (2016) Organocatalysis by an aprotic imidazolium zwitterion: regioselective ring opening of aziridines and applicable on gram scale synthesis. Green Chem 18:565–574. https://doi.org/10.1039/c5gc01323b

    Article  Google Scholar 

  106. Sanz X, Lee GM, Pubill-Ulldemolins C, Bonet A, Gulyás H, Westcott SA, Bo C, Fernández E (2013) Metal-free borylative ring opening of vinyl epoxides and aziridines. Org Biomol Chem 11:7004–7010. https://doi.org/10.1039/c3ob41328d

    Article  PubMed  CAS  Google Scholar 

  107. Ghorai MK, Sahoo AK, Bhattacharyya A (2014) Syntheses of imidazo-, oxa-, and thiazepine ring systems via ring opening of aziridines/Cu-catalyzed C–N/C–C bond formation. J Org Chem 79:6468–6479. https://doi.org/10.1021/jo500888j

    Article  PubMed  CAS  Google Scholar 

  108. Llaveria J, Beltrán Á, Sameera WMC, Locati A, Díaz-Requejo MM, Matheu MI, Castillón S, Maseras F, Pérez PJ (2014) Chem-, regio-, and stereoselective silver-catalyzed aziridination of dienes: scope, mechanistic studies, and ring opening reactions. J Am Chem Soc 136:5342–5350. https://doi.org/10.1021/ja412547r

    Article  PubMed  CAS  Google Scholar 

  109. Sun H, Yang C, Lin R, Xia W (2014) Regioselective ring opening nucleophilic addition of aziridines through photoredox catalyst. Adv Synth Catal 356:2775–2780. https://doi.org/10.1002/adsc.201400476

    Article  CAS  Google Scholar 

  110. Wu B, Gallucci JC, Parquette JR, RajanBabu TV (2014) Bimetallic catalysis in the highly enantioselective ring opening reactions of aziridines. Chem Sci 5:1102–1117. https://doi.org/10.1039/c3sc52929k

    Article  CAS  Google Scholar 

  111. Ghosh A, Pandey AK, Banerjee P (2015) Lewis acid catalyzed annulation of donor–acceptor cyclopropane and \(N\)-tosylaziridinedicarboxylate: one-step synthesis of functionalized \(2H\)-furo[2,3-\(c\)]pyrroles. J Org Chem 80:7235–7242. https://doi.org/10.1021/acs.joc.5b00705

    Article  PubMed  CAS  Google Scholar 

  112. Palillero-Cisneros A, Gordillo-Guerra PG, Aparicio-Solano DM, Gnecco D, Mendoza A, Juárez JR, Terán JL (2015) 7-Endo cyclization of 2,3-epoxyamides and 2,3-aziridine carboxamides by intramolecular Friedel–Crafts reaction. Tetrahedron Asymmetry 26:95–101. https://doi.org/10.1016/j.tetasy.2014.12.004

    Article  CAS  Google Scholar 

  113. Takeda Y, Kuroda A, Sameera WMC, Morokuma K, Minakata S (2016) Palladium-catalyzed regioselective and stereo-invertive ring opening borylation of 2-arylaziridines with bis(pinacolato)diboron: experimental and computational studies. Chem Sci 7:6141–6152. https://doi.org/10.1039/c6sc01120a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Davis AL, Korous AA, Hartel AM (2013) Selective reduction of acyl aziridines to Mannich bases using silyllithium reagents. Tetrahedron Lett 54:3673–3674. https://doi.org/10.1016/j.tetlet.2013.05.005

    Article  CAS  Google Scholar 

  115. Zhao W, Lu Z, Wulff WD (2014) \(\upbeta \)-Amino esters from the reductive ring opening of aziridine-2-carboxylates. J Org Chem 79:10068–10080. https://doi.org/10.1021/jo501694h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Samimi HA, Yamin BM, Saberi F (2015) Synthesis of tert-butyl 1,3-diaryl-3-oxopropylcarbamates by a regiocontrolled reduction of ketoaziridines. Synthesis 47:129–133. https://doi.org/10.1055/s-0034-1379029

    Article  CAS  Google Scholar 

  117. Viswanadh N, Velayudham R, Jambu S, Sasikumar M, Muthukrishnan M (2015) Chiral aziridine ring opening: facile synthesis of (\(R\))-mexiletine and (\(R\))-phenoxybenzamine hydrochloride. Tetrahedron Lett 56:5269–5271. https://doi.org/10.1016/j.tetlet.2015.07.032

    Article  CAS  Google Scholar 

  118. Yadav NN, Choi J, Ha H-H (2016) One-pot multiple reactions: asymmetric synthesis of 2,6-cis-disubstituted piperidine alkaloids from chiral aziridine. Org Biomol Chem 14:6426–6434. https://doi.org/10.1039/c6ob00806b

    Article  PubMed  CAS  Google Scholar 

  119. Yoon H, Sim T (2013) Stereoselective synthesis of (\(+\))-polyoxamic acid starting with a chiral aziridine. Synthesis 45:3276–3280. https://doi.org/10.1055/s-0033-1338545

    Article  CAS  Google Scholar 

  120. Kenis S, D’hooghe M, Verniest G, Reybroeck M, Thi TAD, The CP, Pham TT, Tçrnroos KW, Tuyen NV, Kimpe ND (2013) Nucleophile-directed selective transformation of cis-1-tosyl-2-tosyloxymethyl-3-(trifluoromethyl)aziridine into aziridines, azetidines, and benzo-fused dithianes, oxathianes, dioxanes, and (thio)morpholines. Chem Eur J 19:5966–5971. https://doi.org/10.1002/chem.201204485

    Article  PubMed  CAS  Google Scholar 

  121. Duda ML, Michael FE (2013) Palladium-catalyzed cross-coupling of \(N\)-sulfonylaziridines with boronic acids. J Am Chem Soc 135:18347–18349. https://doi.org/10.1021/ja410686v

    Article  PubMed  CAS  Google Scholar 

  122. Righi G, Bovicelli P, Tirotta I (2013) New one-pot procedure for the synthesis of diprotected amino alcohols from unprotected vinyl aziridines. Tetrahedron Lett 54:6439–6442. https://doi.org/10.1016/j.tetlet.2013.09.047

    Article  CAS  Google Scholar 

  123. Nonn M, Kiss L, Forró E, Sillanpää R, Fülöp F (2014) Synthesis of densely functionalized cispentacin derivatives through selective aziridination and aziridine opening reactions: orthogonally protected di- and triaminocyclopentanecarboxylates. Tetrahedron 70:8511–8519. https://doi.org/10.1016/j.tet.2014.09.071

    Article  CAS  Google Scholar 

  124. Eum H, Choi J, Cho C-G, Ha H-J (2015) Regiochemistry-directed syntheses of polyhydroxylated alkaloids from chiral aziridines. Asian J Org Chem 4:1399–1409. https://doi.org/10.1002/ajoc.201500285

    Article  CAS  Google Scholar 

  125. Roy T, Baviskar DR, Biju AT (2015) Synthesis of \(N\)-aryl \(\upbeta \)-amino alcohols by trifluoroacetic acid promoted multicomponent coupling of aziridines, arynes, and water. J Org Chem 80:11131–11137. https://doi.org/10.1021/acs.joc.5b01798

    Article  PubMed  CAS  Google Scholar 

  126. Knowles JP, Booker-Milburn KI (2016) Unusually facile thermal homodienyl-[1,5]-hydrogen shift reactions in photochemically generated vinyl aziridines. Chem Eur J 22:11429–11434. https://doi.org/10.1002/chem.201600479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to GC University, Faisalabad, for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Fawad Zahoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, R., Naqvi, S.A.R., Zahoor, A.F. et al. Nucleophilic ring opening reactions of aziridines. Mol Divers 22, 447–501 (2018). https://doi.org/10.1007/s11030-018-9829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9829-0

Keywords

Navigation