Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases

Abstract

A new series of 21 Schiff bases of spiro-isatin was synthesized, and their DPPH, CUPRAC and ABTS cation radical scavenging abilities were investigated for antioxidant activity. The results showed that all the synthesized compounds exhibited antioxidant activity for each assay. 5̍-(2,3-Dihydroxybenzylideneamino)spiro[[1,3] dioxolane-2,3̍-indoline]-2̍-on (5c) (IC50 = 4.49 µM, for DPPH; IC50 = 0.39 µM, for ABTS.+; and A0.50 = 0.42 µM, for CUPRAC) showed significantly better ABTS, CUPRAC and DPPH radical scavenging ability than quercetin (IC50 = 8.69 µM, for DPPH; IC50 = 15.49 µM, for ABTS.+; and A0.50 = 18.47 µM, for CUPRAC), which is used as a standard. SAR study showed that the synthesized compounds had higher ABTS.+ activity than DPPH and CUPRAC activities. Moreover, the compounds (5c and 5d), containing two hydroxyl groups, exhibited the highest antioxidant activities for all assays. Quantum chemical calculations were also carried out to support SAR results.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

    CAS  Article  Google Scholar 

  2. 2.

    Lozynskyi A, Zasidko V et al (2017) Synthesis, antioxidant and antimicrobial activities of novel thiopyrano[2,3-d]thiazoles based on aroylacrylic acids. Mol Divers 21:427–436. https://doi.org/10.1007/s11030-017-9737-8

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Dai Y, Shao C et al (2017) The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical. Carbohydr Polym 178:34–40. https://doi.org/10.1016/j.carbpol.2017.09.016

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Mason RP (2016) Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox Biol 8:422–429. https://doi.org/10.1016/j.redox.2016.04.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Trinity JD, Broxterman RM, Richardson RS (2016) Regulation of exercise blood flow: role of free radicals. Free Radic Biol Med 98:90–102. https://doi.org/10.1016/j.freeradbiomed.2016.01.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Razzaq H, Saira F et al (2016) Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid. J Photochem Photobiol, B 161:266–272. https://doi.org/10.1016/j.jphotobiol.2016.04.003

    CAS  Article  Google Scholar 

  7. 7.

    Si W, Chen YP et al (2018) Antioxidant activities of ginger extract and its constituents toward lipids. Food Chem 239:1117–1125. https://doi.org/10.1016/j.foodchem.2017.07.055

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Bentz EN, Pomilio AB, Lobayan RM (2017) Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin. Comput Theor Chem 1110:14–24. https://doi.org/10.1016/j.comptc.2017.03.028

    CAS  Article  Google Scholar 

  9. 9.

    Komeri R, Thankam FG, Muthu J (2017) Free radical scavenging injectable hydrogels for regenerative therapy. Mater Sci Eng C-Mater 71:100–110. https://doi.org/10.1016/j.msec.2016.09.087

    CAS  Article  Google Scholar 

  10. 10.

    Sridharan M, Prasad KJR et al (2016) Application of UV-Vis spectrophotometric process for the assessment of indoloacridines as free radical scavenger. J Photochem Photobiol, B 162:641–645. https://doi.org/10.1016/j.jphotobiol.2016.07.026

    CAS  Article  Google Scholar 

  11. 11.

    Sivaguru P, Parameswaran K, Lalitha A (2017) Antioxidant, anticancer and electrochemical redox properties of new bis(2,3-dihydroquinazolin-4(1H)-one) derivatives. Mol Divers 21:611–620. https://doi.org/10.1007/s11030-017-9748-5

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Giorno TBS, Silva BVD et al (2016) Antinociceptive effect and mechanism of action of isatin, N-methyl isatin and oxopropyl isatin in mice. Life Sci 151:189–198. https://doi.org/10.1016/j.lfs.2016.02.052

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ugale V, Patel H et al (2017) Benzofurano-isatins: search for antimicrobial agents. Arab J Chem 10:S389–S396. https://doi.org/10.1016/j.arabjc.2012.09.011

    CAS  Article  Google Scholar 

  14. 14.

    Pavlovska TL, Redkin RG et al (2016) Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol Divers 20:299–344. https://doi.org/10.1007/s11030-015-9629-8

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Gazieva GA, Izmestev AN et al (2018) The influence of substituents on the reactivity and cytotoxicity of imidazothiazolotriazinones. Mol Divers 22:585–589. https://doi.org/10.1007/s11030-018-9813-8

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Justo LA, Duran R et al (2016) Effects and mechanism of action of isatin, a MAO inhibitor, on in vivo striatal dopamine release. Neurochem Int 99:147–157. https://doi.org/10.1016/j.neuint.2016.06.012

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Xu Z, Zhang S et al (2017) Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H-1,2,3-triazole-isatin hybrids. Bioorg Med Chem Lett 27(16):3643–3646. https://doi.org/10.1016/j.bmcl.2017.07.023

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Wang G, Chen M et al (2018) Synthesis, in vitro alpha-glucosidase inhibitory activity and docking studies of novel chromone-isatin derivatives. Bioorg Med Chem Lett 28(2):113–116. https://doi.org/10.1016/j.bmcl.2017.11.047

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Singh H, Singh JV et al (2017) Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: design, synthesis, biological investigation and docking studies. Bioorg Med Chem Lett 27(17):3974–3979. https://doi.org/10.1016/j.bmcl.2017.07.069

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ibrahim HS, Abou-seri SM et al (2016) Bis-isatin hydrazones with novel linkers: synthesis and biological evaluation as cytotoxic agents. Eur J Med Chem 108:415–422. https://doi.org/10.1016/j.ejmech.2015.11.047

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wang J, Yun D et al (2017) Design, synthesis and QSAR study of novel isatin analogues inspired Michael acceptor as potential anticancer compounds. Eur J Med Chem 144:493–503. https://doi.org/10.1016/j.ejmech.2017.12.043

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kausar N, Masum AA et al (2017) A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol Divers 21:325–337. https://doi.org/10.1007/s11030-017-9728-9

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Andreani A, Burnelli S et al (2010) New isatin derivatives with antioxidant activity. Eur J Med Chem 45:1374–1378. https://doi.org/10.1016/j.ejmech.2009.12.035

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lucarini M, Pedrielli P et al (1999) Bond dissociation energies of the N–H bond and rate constants for the reaction with alkyl, alkoxyl, and peroxyl radicals of phenothiazines and related compounds. J Am Chem Soc 121:11546–11553. https://doi.org/10.1021/ja992904u

    CAS  Article  Google Scholar 

  25. 25.

    Pakravan P, Kashanian S et al (2013) Biochemical and pharmacological characterization of isatin and its derivatives: from structure to activity. Pharmacol Rep 65:313–335. https://doi.org/10.1016/S1734-1140(13)71007-7

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Visagaperumal D, Ezekwem JE et al (2018) Isatin schiff base-an overview. PharmaTutor 6:38–47. https://doi.org/10.29161/PT.v6.i5.2018.38

    CAS  Article  Google Scholar 

  27. 27.

    Ghosh S, Roy N et al (2018) Photophysics of a coumarin based schiff base in solvents of varying polarities. Spectrochim Acta A 188:252–257. https://doi.org/10.1016/j.saa.2017.07.006

    CAS  Article  Google Scholar 

  28. 28.

    Xia L, Xia YF et al (2015) Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure-microbicidal activity relationship. Eur J Med Chem 97:83–93. https://doi.org/10.1016/j.ejmech.2015.04.042

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Gencer N, Sonmez F et al (2014) Synthesis, structure-activity relationships and biological activity of new isatin derivatives as tyrosinase inhibitors. Curr Top Med Chem 14(12):1450–1462. https://doi.org/10.2174/1568026614666140530104344

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Huong TTL, Dung DTM et al (2015) Novel 2-oxoindoline-based hydroxamic acids: synthesis, cytotoxicity, and inhibition of histone deacetylation. Tetrahedron Lett 56(46):6425–6429. https://doi.org/10.1016/j.tetlet.2015.09.147

    CAS  Article  Google Scholar 

  31. 31.

    Wang X, Yin J et al (2014) Design, synthesis, and antibacterial activity of novel Schiff base derivatives of quinazolin-4(3H)-one. Eur J Med Chem 77:65–74. https://doi.org/10.1016/j.ejmech.2014.02.053

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Floegel A, Kim DO et al (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal 24:1043–1048. https://doi.org/10.1016/j.jfca.2011.01.008

    CAS  Article  Google Scholar 

  33. 33.

    Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422. https://doi.org/10.1007/s13197-011-0251-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kurt BZ, Gazioglu I et al (2015) Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives. Bioorg Chem 59:80–90. https://doi.org/10.1016/j.bioorg.2015.02.002

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kurt BZ, Gazioglu I et al (2015) Potential of aryl-urea-benzofuranylthiazoles hybrids as multitasking agents in Alzheimer’s disease. Eur J Med Chem 102:80–92. https://doi.org/10.1016/j.ejmech.2015.07.005

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Belkheiri N, Bouguerne B et al (2010) Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur J Med Chem 45:3019–3026. https://doi.org/10.1016/j.ejmech.2010.03.031

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Apak R, Ozyurek M et al (2016) Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 64:997–1027. https://doi.org/10.1021/acs.jafc.5b04739

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Powis G (1989) Free radical formation by antitumor quinones. Free Radic Biol Med 6:63–101. https://doi.org/10.1016/0891-5849(89)90162-7

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Soares MA, Lessa JA et al (2012) N4-Phenyl-substituted 2-acetylpyridine thiosemicarbazones: cytotoxicity against human tumor cells, structure–activity relationship studies and investigation on the mechanism of action. Bioorg Med Chem 20:3396–3409. https://doi.org/10.1016/j.bmc.2012.04.027

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Atahan A, Gencer N et al (2018) Synthesis, biological activity and structure-activity relationship of novel diphenylurea derivatives containing tetrahydroquinoline as carbonic anhydrase I and II inhibitors. ChemistrySelect 3:529–534. https://doi.org/10.1002/slct.201702562

    CAS  Article  Google Scholar 

  41. 41.

    Minkin VI (1999) Glossary of terms used in theoretical organic chemistry. Pure Appl Chem 71:1919. https://doi.org/10.1351/pac199971101919

    CAS  Article  Google Scholar 

  42. 42.

    Ho TL (1975) The hard soft acids bases (HSAB) principle and organic chemistry. Chem Rev 75:1–20. https://doi.org/10.1021/cr60293a001

    CAS  Article  Google Scholar 

  43. 43.

    Shao Y, Gan Z et al (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113(2):184–215. https://doi.org/10.1080/00268976.2014.952696

    CAS  Article  Google Scholar 

  44. 44.

    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    CAS  Article  Google Scholar 

  45. 45.

    Altürk S, Avcı D et al (2016) A cobalt (II) complex with 6-methylpicolinate: synthesis, characterization, second- and third-order nonlinear optical properties, and DFT calculations. J Phys Chem Solids 98:71–80. https://doi.org/10.1016/j.jpcs.2016.06.008

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sakarya Research Fund of the Sakarya University (Project Number: 2014-50-01-036).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fatih Sonmez.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2041 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sonmez, F., Gunesli, Z., Kurt, B.Z. et al. Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Mol Divers 23, 829–844 (2019). https://doi.org/10.1007/s11030-018-09910-7

Download citation

Keywords

  • ABTS
  • Antioxidant activity
  • CUPRAC
  • DPPH
  • Isatin
  • Schiff base