Skip to main content
Log in

Recent advances in the development of polycyclic skeletons via Ugi reaction cascades

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Isocyanide-based multicomponent reactions are among the most powerful synthetic tools available. Particularly, the isocyanide-based Ugi reaction can allow rapid preparation of \(\alpha \)-aminoacyl amide derivatives and polyazaheterocycles with extensive pharmaceutical applications. Moreover, bridged polyazaheterocycles, including one or more quaternary carbon centers, can be constructed via the Ugi cascade reaction in a few steps. This review will emphasize synthesis and bioactivities of bridged compounds with quaternary centers constructed through Ugi cascade reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Fig. 1
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22

Similar content being viewed by others

References

  1. Ayaz M, De Moliner F, Dietrich J, Hulme C (2013) Evolution of isocyanide chemistry. In: Nenajdenko V (ed) Wiley, Weinheim, pp 335–384

  2. Xu H, Jia ZH, Xu K, Zhou H, Shen M (2015) One-pot protocol to functionalized benzopyrrolizidine catalyzed successively by \({\text{ Rh }}_{2}{\text{(OAc) }}_{4}\) and \({\text{ Cu(OTf) }}_{2}\): a transition metal-lewis acid catalysis relay. Org Lett 17:66–69. https://doi.org/10.1021/ol503247t

    Article  PubMed  CAS  Google Scholar 

  3. Laborda P, Sayago F, Cativiela C, Parella T, Joglar J, Clapes P (2014) Aldolase-catalyzed synthesis of conformationally constrained iminocyclitols: preparation of polyhydroxylated benzopyrrolizidines and cyclohexapyrrolizidines. Org Lett 16:1422–1425. https://doi.org/10.1021/ol5002158

    Article  PubMed  CAS  Google Scholar 

  4. Brucelle F, Renaud P (2012) Synthesis of indolines, indoles, and benzopyrrolizidinones from simple aryl azides. Org Lett 14:3048–3051. https://doi.org/10.1021/ol301120w

    Article  PubMed  CAS  Google Scholar 

  5. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. https://doi.org/10.1002/1521-3773(20000915)

    Article  Google Scholar 

  6. Armstrong RM, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Res 29:123–131. https://doi.org/10.1021/ar9502083

    Article  CAS  Google Scholar 

  7. Sunderhaus JD, Martin SF (2009) Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem Eur J 15:1300–1308. https://doi.org/10.1002/chem.200802140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sunderhaus JD, Dockendorff C, Martin SF (2007) Applications of multicomponent reactions for the synthesis of diverse heterocyclic scaffolds. Org Lett 9:4223–4226. https://doi.org/10.1021/ol7018357

    Article  PubMed  CAS  Google Scholar 

  9. Ilyn AP, Trifilenkov AS, Kuzovkova JA, Kutepov SA, Nikitin AV, Ivachtchenko AV (2005) New four-component Ugi-type reaction. Synthesis of heterocyclic structures containing a pyrrolo[1,2-a][1,4]diazepine fragment. J Org Chem 70:1478–1481. https://doi.org/10.1021/jo048204b

    Article  PubMed  CAS  Google Scholar 

  10. Cano-Herrera MA, Miranda LD (2011) Expedient entry to the piperazinohydroisoquinoline ring system using a sequential Ugi/Pictet-Spengler/reductive methylation reaction protocol. Chem Commun 47:10770–10772. https://doi.org/10.1039/C1CC10759C

    Article  CAS  Google Scholar 

  11. Liu X, Ma X, Huang Y, Gu Z (2013) Pd-catalyzed heck-type cascade reactions with N-tosyl hydrazones: an efficient way to alkenes via in situ generated alkylpalladium. Org Lett 15:4814–4817. https://doi.org/10.1021/ol402210a

    Article  PubMed  CAS  Google Scholar 

  12. Miranda LD, Hernández-Vázquez E (2015) Multicomponent/palladium-catalyzed cascade entry to benzopyrrolizidine derivatives: synthesis and antioxidant evaluation. J Org Chem 80:10611–10623. https://doi.org/10.1021/acs.joc.5b01742

    Article  PubMed  CAS  Google Scholar 

  13. Iwata A, Inuki S, Oishi S, Fujii N, Ohno H (2014) Synthesis of fused tetracyclic spiroindoles via palladium-catalysed cascade cyclisation. Chem Commun 50:298–300. https://doi.org/10.1039/C3CC46511J

    Article  CAS  Google Scholar 

  14. Kim KH, Kim SH, Lee HJ, Kim JM (2013) Palladium-catalyzed domino cyclization (5-exo/3-exo), ring-expansion by palladium rearrangement, and aromatization: an expedient synthesis of 4-arylnicotinates from Morita–Baylis–Hillman adducts. Adv Synth Catal 355:1977–1983. https://doi.org/10.1002/adsc.201300211

    Article  CAS  Google Scholar 

  15. Montgomery TD, Nibbs AE, Zhu Y, Rawal VH (2014) Rapid access to spirocyclized indolenines via palladium-catalyzed cascade reactions of tryptamine derivatives and propargyl carbonate. Org Lett 16:3480–3483. https://doi.org/10.1021/ol501409a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Montgomery TD, Zhu Y, Kagawa N, Rawal VH (2013) Palladium-catalyzed decarboxylative allylation and benzylation of N-alloc and N-Cbz indoles. Org Lett 15:1140–1143. https://doi.org/10.1021/ol400334u

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Perez-Labrada K, Flórez-López E, Paz-Morales E, Mirandá LD, Rivera DG (2011) A two-step practical synthesis of dehydroalanine derivatives. Tetrahedron Lett 52:1635–1638. https://doi.org/10.1016/j.tetlet.2011.01.122

    Article  CAS  Google Scholar 

  18. García-González MC, Hernández-Vázquez E, Gordillo-Cruz R, Miranda LD (2015) Ugi-derived dehydroalanines as a pivotal template in the diversity oriented synthesis of aza-polyheterocycles. Chem Commun 51:11669–11672. https://doi.org/10.1039/C5CC02927A

    Article  CAS  Google Scholar 

  19. Cuny G, Bois-Choussy M, Zhu J (2004) Palladium- and copper-catalyzed synthesis of medium- and large-sized ring-fused dihydroazaphenanthrenes and 1,4-benzodiazepine-2,5-diones. Control of reaction pathway by metal-switching. J Am Chem Soc 126:14475–14484. https://doi.org/10.1021/ja047472o

    Article  PubMed  CAS  Google Scholar 

  20. Salcedo A, Neuville L, Rondot C, Retailleau P, Zhu J (2008) Palladium-catalyzed domino intramolecular N-arylation/intermolecular C–C bond formation for the synthesis of functionalized benzodiazepinediones. Org Lett 10:857–860. https://doi.org/10.1021/ol7029799

    Article  PubMed  CAS  Google Scholar 

  21. Bonnaterre F, Bois-Choussy M, Zhu J (2008) Synthesis of dihydrophenanthridines by a sequence of Ugi-4CR and palladium-catalyzed intramolecular C–H functionalization. Beilstein J Org Chem 4:10–13. https://doi.org/10.3762/bjoc.4.10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Erb W, Neuville L, Zhu J (2009) Ugi-post functionalization, from a single set of Ugi-adducts to two distinct heterocycles by microwave-assisted palladium-catalyzed cyclizations: tuning the reaction pathways by ligand switch. J Org Chem 74:3109–3115. https://doi.org/10.1021/jo900210x

    Article  PubMed  CAS  Google Scholar 

  23. Welsch SJ, Kalinski C, Umkerhke M, Ross G, Kolb J, Burdack C, Wessjohann LA (2012) Palladium and copper catalyzed cyclizations of hydrazine derived Ugi products: facile synthesis of substituted indazolones and hydroxytriazafluorendiones. Tetrahedron Lett 53:2298–2301. https://doi.org/10.1016/j.tetlet.2012.02.095

    Article  CAS  Google Scholar 

  24. Welsch SJ, Kalinski C, Umkerhke M, Ross G, Kolb J, Burdack C, Wessjohann LA (2011) \(\text{ Pd }^{II/IV}\) catalyzed oxidative cyclization of 1,6-enynes derived by Ugi-4-component reaction. Tetrahedron Lett 52:6295–6297. https://doi.org/10.1016/j.tetlet.2011.09.094

    Article  CAS  Google Scholar 

  25. Perez-Labrada K, Florez-Lopez E, Paz-Morales E, Miranda LD, Rivera DG (2011) A two-step practical synthesis of dehydroalanine derivatives. Tetrahedron Lett 52:1635–1638. https://doi.org/10.1016/j.tetlet.2011.01.122

    Article  CAS  Google Scholar 

  26. Selvakumar J, Ramanathan CR (2011) Brønsted acid assisted activation of imide carbonyl group: regioselective synthesis of isoindoloisoquinolinone alkaloid (\(\pm )\)-nuevamine. Org Biomol Chem 9:7643–7646. https://doi.org/10.1039/C1OB06349A

    Article  PubMed  CAS  Google Scholar 

  27. Liu CT, Wang QW, Wang CH (1981) Structure of koumine. J Am Chem Soc 103:4634–4635. https://doi.org/10.1021/ja00405a081

    Article  CAS  Google Scholar 

  28. Verbitski SM, Mayne CL, Davis RA, Concepcion GP, Ireland CM (2002) Isolation, structure determination, and biological activity of a novel alkaloid, perophoramidine, from the philippine ascidian perophora namei. J Org Chem 67:7124–7126. https://doi.org/10.1021/jo026012f

    Article  PubMed  CAS  Google Scholar 

  29. Siengalewicz P, Gaich T, Mulzer J (2008) It all began with an error: the nomofungin/communesin story. Angew Chem Int Ed 47:8170–8176. https://doi.org/10.1002/anie.200801735

    Article  CAS  Google Scholar 

  30. Dalsgaard PW, Blunt JW, Frisvad JC, Christophersen C (2005) Communesins G and H, new alkaloids from the psychrotolerant fungus penicillium rivulum. J Nat Prod 68:258–261. https://doi.org/10.1021/np049646l

    Article  PubMed  CAS  Google Scholar 

  31. Zuo Z, Xie W, Ma D (2010) Total synthesis and absolute stereochemical assignment of (-)-communesin F. J Am Chem Soc 132:13226–13228. https://doi.org/10.1021/ja106739g

    Article  PubMed  CAS  Google Scholar 

  32. Fuchs JR, Funk RL (2004) Total synthesis of (+)-perophoramidine. J Am Chem Soc 126:5068–5069. https://doi.org/10.1021/ja049569g

    Article  PubMed  CAS  Google Scholar 

  33. Wu H, Xue F, Xiao X, Qin Y (2010) Total synthesis of (+)-perophoramidine and determination of the absolute configuration. J Am Chem Soc 132:14052–14054. https://doi.org/10.1021/ja1070043

    Article  PubMed  CAS  Google Scholar 

  34. Modha SG, Vachhani DD, Jacobs J, Sharma SK, Parmar VS, Meervelt LV, Van der Eycken EV (2012) A diversity-oriented approach to spiroindolines: post-Ugi gold-catalyzed diastereoselective domino cyclization. Angew Chem Int Ed 51:9572–9575. https://doi.org/10.1002/anie.201205052

    Article  CAS  Google Scholar 

  35. Schröder F, Ojeda M, Erdmann N, Jacobs J, Luque R, Noël T, Meervelt LV, Van der Eyckend J, Van der Eycken E (2015) Supported gold nanoparticles as efficient and reusable heterogeneous catalyst for cycloisomerization reactions. Green Chem 17:3314–3317. https://doi.org/10.1039/C5GC00430F

    Article  CAS  Google Scholar 

  36. El Kaïm L, Grimaud L, Le Goff XF, Menes-Arzate M, Miranda LD (2011) Straightforward four-component access to spiroindolines. Chem Commun 47:8145–8147. https://doi.org/10.1039/C1CC12236C

    Article  Google Scholar 

  37. Wang W, Herdtweck E, Domling A (2010) Polycyclic indole alkaloid-type compounds by MCR. Chem Commun 46:770–772. https://doi.org/10.1039/B917660H

    Article  CAS  Google Scholar 

  38. Flanagan SR, Harrowven DC, Bradley M (2003) Radical cyclisation reactions with indoles. Tetrahedron Lett 44:1795–1798. https://doi.org/10.1016/S0040-4039(03)00094-7

    Article  CAS  Google Scholar 

  39. Miranda LD, CruzAlmanza R, Pavon M, Romero Y, Muchowski JM (2000) A tandem radical addition/cyclization process of 1-(2-iodoethyl)indoles and methyl acrylate. Tetrahedron Lett 35:8433–8436. https://doi.org/10.1016/S0040-4039(00)01829-3

    Article  Google Scholar 

  40. Bennasar ML, Roca T, Griera R, Bosch J (2001) New cascade 2-indolylacyl radical addition–cyclization reactions. J Org Chem 66:7547–7551. https://doi.org/10.1021/jo015905p

    Article  PubMed  CAS  Google Scholar 

  41. Saya JM, Oppelaar B, Cioc RC, Heijden GVD, Vande Velde CML, Orru RVA, Ruijter E (2016) Synthesis of polycyclic spiroindolines by highly diastereoselective interrupted Ugi cascade reactions of 3-(2-isocyanoethyl)indoles. Chem Commun 52:12482–12485. https://doi.org/10.1039/C6CC07459F

    Article  CAS  Google Scholar 

  42. Li ZH, Kumar A, Peshkov A, Van der Eycken EV (2016) A domino Ugi/Michael approach for the synthesis of \(\alpha \),\(\beta \)-unsaturated \(\gamma \)-lactams. Tetrahedron Lett 57:754–756. https://doi.org/10.1016/j.tetlet.2016.01.014

    Article  CAS  Google Scholar 

  43. Katritzky AR, Rees CW, Scriven EFV (1996) Comprehensive heterocyclic chemistry II, 3rd edn. Pergamon, New York

    Google Scholar 

  44. Tuba R (2013) Synthesis of \(\beta \)-lactams by transition metal promoted Staudinger reactions: alternative synthetic approaches from transition metal enhanced organocatalysis to in situ, highly reactive intermediate synthesis and catalytic tandem reactions. Org Biomol Chem 11:5976–5988. https://doi.org/10.1039/C3OB41048J

    Article  PubMed  CAS  Google Scholar 

  45. Tarui A, Sato K, Omote M, Kumadaki I, Ando A (2010) Stereoselective synthesis of \(\alpha \)-fluorinated amino acid derivatives. Adv Synth Catal 352:2733–2744. https://doi.org/10.1002/adsc.201000506

    Article  CAS  Google Scholar 

  46. Pitts CR, Lectka T (2014) Chemical synthesis of \(\beta \)-lactams: asymmetric catalysis and other recent advances. Chem Rev 114:7930–7953. https://doi.org/10.1021/cr4005549

    Article  PubMed  CAS  Google Scholar 

  47. Alcaide B, Almendros P, Luna A (2014) Novel achievements with an old metal: copper-promoted synthesis of four-membered azacycles. RSC Adv 4:1689–1707. https://doi.org/10.1039/C3RA43861A

    Article  CAS  Google Scholar 

  48. Adam W, Groer P, Humpf HU, Saha-Möller CR (2000) Synthesis of optically active \(\alpha \)-methylene \(\beta \)-lactams through lipase-catalyzed kinetic resolution. J Org Chem 65:4919–4922. https://doi.org/10.1021/jo0003089

    Article  PubMed  CAS  Google Scholar 

  49. Wang X, Meng F, Wang Y, Han Z, Chen Y, Liu L, Wang Z, Ding K (2012) Aromatic spiroketal bisphosphine ligands: palladium-catalyzed asymmetric allylic amination of racemic Morita–Baylis–Hillman adducts. Angew Chem Int Ed 51:9276–9282. https://doi.org/10.1002/anie.201204925

    Article  CAS  Google Scholar 

  50. Li W, Liu C, Zhang H, Ye K, Zhang G, Zhang W, Duan Z, You S, Lei A (2014) Palladium-catalyzed oxidative carbonylation of \(N\)-allylamines for the synthesis of \(\beta \)-lactams. Angew Chem Int Ed 53:2443–2446. https://doi.org/10.1002/anie.201309081

    Article  CAS  Google Scholar 

  51. Li ZH, Sharma UK, Liu Z, Sharma N, Harvey JN, Van der Eycken EV (2015) Diversity-oriented synthesis of \(\beta \)-lactams and \(\gamma \)-lactams by post-Ugi nucleophilic cyclization: Lewis acids as regioselective switch. Eur J Org Chem 2015:3957–3962. https://doi.org/10.1002/ejoc.201500270

    Article  CAS  Google Scholar 

  52. Yugandhar D, Kuriakose S, Nanubolu JB, Srivastava AK (2016) Synthesis of alkaloid-mimicking tricyclic skeletons by diastereo- and regioselective Ugi/ipso-cyclization/aza-Michael cascade reaction in one-pot. Org Lett 18:1040–1043. https://doi.org/10.1021/acs.orglett.6b00164

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez-Solla H, Concellon C, Tuya P, Garcia-Granda S, Diaz MR (2012) Asymmetric construction of quaternary stereocenters: synthesis of enantiopure amino acid-based tricyclic \(\alpha \),\(\beta \)-enones through an ipso-Friedel-Crafts/Michael addition cascade. Adv Synth Catal 354:295–300. https://doi.org/10.1002/adsc.201100497

    Article  CAS  Google Scholar 

  54. Williams RM, Cox RJ (2003) Paraherquamides, brevianamides, and asperparalines: laboratory synthesis and biosynthesis. An interim report. Acc Chem Res 36:127–139. https://doi.org/10.1021/ar020229e

    Article  PubMed  CAS  Google Scholar 

  55. Zhou F, Liu YL, Zhou J (2010) Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position. Adv Synth Catal 352:1381–1407. https://doi.org/10.1002/adsc.201000161

    Article  CAS  Google Scholar 

  56. Ball-Jones NR, Badillo JJ, Franz AK (2012) Strategies for the enantioselective synthesis of spirooxindoles. Org Biomol Chem 10:5165–5181. https://doi.org/10.1039/C2OB25184A

    Article  PubMed  CAS  Google Scholar 

  57. Singh GS, Desta ZY (2012) Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem Rev 112:6104–6155. https://doi.org/10.1021/cr300135y

    Article  PubMed  CAS  Google Scholar 

  58. Hong L, Wang R (2013) Recent advances in asymmetric organocatalytic construction of \(3,3^\prime \)-spirocyclic oxindoles. Adv Synth Catal 355:1023–1052. https://doi.org/10.1002/adsc.201200808

    Article  CAS  Google Scholar 

  59. Santos MMM (2014) Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron 70:9735–9757. https://doi.org/10.1016/j.tet.2014.08.005

    Article  CAS  Google Scholar 

  60. Yu B, Yu DQ, Liu HM (2015) Spirooxindoles: promising scaffolds for anticancer agents. Eur J Med Chem 97:673–698. https://doi.org/10.1016/j.ejmech.2014.06.056

    Article  PubMed  CAS  Google Scholar 

  61. Companyó X, Zea A, Alba ANR, Mazzanti A, Moyano A, Rios R (2010) Organocatalytic synthesis of spiro compounds via a cascade Michael–Michael–aldol reaction. Chem Commun 46:6953–6955. https://doi.org/10.1039/C0CC01522A

    Article  Google Scholar 

  62. Wang LL, Peng L, Bai JF, Huang QC, Xu XY, Wang LX (2010) Highly organocatalytic asymmetric Michael-ketone aldol-dehydration domino reaction: straightforward approach to construct six-membered spirocyclic oxindoles. Chem Commun 46:8064–8066. https://doi.org/10.1039/C0CC03032E

    Article  CAS  Google Scholar 

  63. Tan B, Hernández-Torres G, Barbas CF III (2011) Highly efficient hydrogen-bonding catalysis of the Diels–Alder reaction of 3-vinylindoles and methyleneindolinones provides carbazolespirooxindole skeletons. J Am Chem Soc 133:12354–12357. https://doi.org/10.1021/ja203812h

    Article  PubMed  CAS  Google Scholar 

  64. Dandia A, Parewa V, Jain AK, Rathore KS (2011) Step-economic, efficient, ZnS nanoparticle-catalyzed synthesis of spirooxindole derivatives in aqueous medium via Knoevenagel condensation followed by Michael addition. Green Chem 13:2135–2145. https://doi.org/10.1039/C1GC15244K

    Article  CAS  Google Scholar 

  65. Han-Ya Y, Tokuyama H, Fukuyama T (2011) Total synthesis of (-)-conophylline and (-)-conophyllidine. Angew Chem Int Ed 50:4884–4887. https://doi.org/10.1002/anie.201100981

    Article  CAS  Google Scholar 

  66. Li ZH, Sharma N, Sharma UK, Jacobs J, Meerveltb LV, Van der Eycken EV (2016) Ligand-controlled product selectivity in palladium-catalyzed domino post-Ugi construction of (spiro)polyheterocycles. Chem Commun 52:5516–5519. https://doi.org/10.1039/C6CC00784H

    Article  CAS  Google Scholar 

  67. Sharma N, Li Z, Sharma UK, Van der Eycken EV (2014) Facile access to functionalized spiro[indoline-3,2\({}^\prime \)-pyrrole]-2,5\({}^\prime \)-diones via post-Ugi domino Buchwald-Hartwig/Michael reaction. Org Lett 16:3884–3887. https://doi.org/10.1021/ol5019079

    Article  PubMed  CAS  Google Scholar 

  68. Li ZH, Zhao YP, Tian GL, He Y, Song GH, Van der Eycken EV (2016) Synthesis of novel imidazole-based triheterocycles via a domino Ugi/Michael reaction and silver-catalyzed heteroannulation. RSC Adv 6:103601–103605. https://doi.org/10.1039/C6RA23180B

    Article  CAS  Google Scholar 

  69. Klapars A, Parris S, Anderson KW, Buchwald SL (2004) Synthesis of medium ring nitrogen heterocycles via a tandem copper-catalyzed C–N bond rormation-ring-expansion process. J Am Chem Soc 126:3529–3533. https://doi.org/10.1021/ja038565t

    Article  PubMed  CAS  Google Scholar 

  70. Chattopadhyay SK, Karmakar S, Biswas T, Majumdar KC, Rahaman H, Roy B (2007) Formation of medium-ring heterocycles by diene and enyne metathesis. Tetrahedron 63:3919–3952. https://doi.org/10.1016/j.tet.2007.01.063

    Article  CAS  Google Scholar 

  71. Lam JK, Schmidt Y, Vanderwal CD (2012) Complex polycyclic scaffolds by metathesis rearrangement of Himbert arene/allene cycloadducts. Org Lett 14:5566–5569. https://doi.org/10.1021/ol302680m

    Article  PubMed  CAS  Google Scholar 

  72. Lam JK, Pham HV, Houk KN, Vanderwal CD (2013) Computation and experiment reveal that the ring-rearrangement metathesis of Himbert cycloadducts can be subject to kinetic or thermodynamic control. J Am Chem Soc 135:17585–17594. https://doi.org/10.1021/ja409618p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Pham HV, Karns AS, Vanderwal CD, Houk KN (2015) Computational and experimental investigations of the formal dyotropic rearrangements of Himbert arene/allene cycloadducts. J Am Chem Soc 137:6956–6964. https://doi.org/10.1021/jacs.5b03718

    Article  PubMed  CAS  Google Scholar 

  74. Cheng GS, He X, Tian L, Chen JW, Li CJ, Jia XS, Li J (2015) Ugi/Himbert arene/allene Diels–Alder cycloaddition to synthesize strained polycyclic skeleton. J Org Chem 80:11100–11107. https://doi.org/10.1021/acs.joc.5b01724

    Article  PubMed  CAS  Google Scholar 

  75. Richey B, Mason KM, Meyers MS, Luesse SB (2016) Rapid access to conformationally-constrained oxatricycles via Ugi–Smiles couplings. Tetrahedron Lett 57:492–494. https://doi.org/10.1016/j.tetlet.2015.12.068

    Article  CAS  Google Scholar 

  76. Hande KR, Huwendiek S, Östring C, Portwood N, Roblick UJ, Pawitan Y, Alaiya A, Sennerstam R, Zetterberg A, Auer G (2004) Improved grading of breast adenocarcinomas based on genomic instability. Cancer Res 64:904–909. https://doi.org/10.1158/0008-5472

    Article  Google Scholar 

  77. Watzke M, Schulz K, Johannes K, Ullrich P, Martens J (2008) First synthesis of bi- and tricyclic \(\alpha \),\(\beta \)-unsaturated \(\delta \)-oxacaprolactams from cyclic imines via ring-closing metathesis. Eur J Org Chem 22:3859–3867. https://doi.org/10.1002/ejoc.200800254

    Article  CAS  Google Scholar 

  78. Stalling T, Saak W, Martens J (2013) Synthesis of bicyclic thiazolidinethiones and oxazolidinones by water-mediated multicomponent reactions (MCR) and ring-closing metathesis (RCM). Eur J Org Chem 35:8022–8032. https://doi.org/10.1002/ejoc.201301162

    Article  CAS  Google Scholar 

  79. Stalling T, Pauly J, Schmidtmann M, Martens J (2014) Multicomponent synthesis of bicyclic thiazolidinethiones and oxazolidinones in water. Eur J Org Chem 4:833–843. https://doi.org/10.1002/ejoc.201301213

    Article  CAS  Google Scholar 

  80. Kröger D, Schlüter T, Fischer M, Geibel I, Martens J (2015) Three-component reaction toward polyannulated quinazolinones, benzoxazinones, and benzothiazinones. ACS Combin Sci 17:202–207. https://doi.org/10.1021/co500165a

    Article  CAS  Google Scholar 

  81. Kröger D, Brockmeyer F, Kahrs C (2015) A three-component reaction for rapid access to underexplored 1,3-thiazine-2-thiones. Org Biomol Chem 13:7223–7229. https://doi.org/10.1039/C5OB00377F

    Article  PubMed  CAS  Google Scholar 

  82. Martens J, Offermanns H, Scherberich P (1981) Facile synthesis of racemic cysteine. Angew Chem Int Ed Engl 20:668–670. https://doi.org/10.1002/anie.198106681

    Article  Google Scholar 

  83. Hu JF, Schetz JA, Kelly M, Peng JN, Ang KKH, Flotow H, Leong CY, Ng SB, Buss AD, Wilkins SP, Hamann MT (2002) New antiinfective and human 5-HT2 receptor binding natural and semisynthetic compounds from the jamaican sponge smenospongiaaurea. J Nat Prod 65:476–480. https://doi.org/10.1021/np010471e

    Article  PubMed  CAS  Google Scholar 

  84. Segraves NL, Crews P (2005) Investigation of brominated tryptophan alkaloids from two thorectidae sponges: thorectandra and smenospongia. J Nat Prod 68:1484–1488. https://doi.org/10.1021/np0501334

    Article  PubMed  CAS  Google Scholar 

  85. Kochanowska AJ, Rao KV, Childress S, El-Alfy A, Matsumoto RR, Kelly M, Stewart GS, Sufka KJ, Hamann MT (2008) Secondary metabolites from three florida sponges with antidepressant activity. J Nat Prod 71:186–189. https://doi.org/10.1021/np070371u

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nielsen TE, Schreiber SL (2008) Towards the optimal screening collection: a synthesis strategy. Angew Chem Int Ed 47:48–56. https://doi.org/10.1002/anie.200703073

    Article  CAS  Google Scholar 

  87. Mitchell JM, Shaw JT (2006) A structurally diverse library of polycyclic lactams resulting from systematic placement of proximal functional groups. Angew Chem Int Ed 45:1722–1726. https://doi.org/10.1002/anie.200503341

    Article  CAS  Google Scholar 

  88. Comer E, Rohan E, Deng L, Porco JA Jr (2007) An approach to skeletal diversity using functional group pairing of multifunctional scaffolds. Org Lett 9:2123–2126. https://doi.org/10.1021/ol070606t

    Article  PubMed  CAS  Google Scholar 

  89. O’Leary-Steele C, Pedersen PJ, James T, Lanyon-Hogg T, Leach S, Hayes J, Nelson A (2010) Synthesis of small molecules with high scaffold diversity: exploitation of metathesis cascades in combination with inter- and intramolecular Diels–Alder reactions. Chem Eur J 16:9563–9571. https://doi.org/10.1002/chem.201000707

    Article  PubMed  CAS  Google Scholar 

  90. Bauer RA, DiBlasi CM, Tan DS (2010) The tert-butylsulfinamide lynchpin in transition-metal-mediated multiscaffold library synthesis. Org Lett 12:2084–2087. https://doi.org/10.1021/ol100574y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Marcaurelle LA, Comer E, Dandapani S, Duvall JR, Gerard B, Kesavan S, Lee MD IV, Liu H, Lowe JT, Marie JC, Mulrooney CA, Pandya BA, Rowley A, Ryba TD, Suh BC, Wei J, Young DW, Akella LB, Ross NT, Zhang YL, Fass DM, Reis SA, Zhao WN, Haggarty SJ, Palmer M, Foley MA (2010) An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors. J Am Chem Soc 132:16962–16976. https://doi.org/10.1021/ja105119r

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mizoguchi H, Oguri H, Tsuge K, Oikawa H (2009) Divergent and expeditious access to fused skeletons inspired by indole alkaloids and transtaganolides. Org Lett 11:3016–3019. https://doi.org/10.1021/ol901020a

    Article  PubMed  CAS  Google Scholar 

  93. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. https://doi.org/10.1021/cr0505728

    Article  PubMed  CAS  Google Scholar 

  94. Oguri H, Mizoguchi H, Oikawa H, Ishiyama A, Iwatsuki M, Otoguro K, Ōmura S (2012) Parallel and four-step synthesis of natural-product inspired scaffolds through modular assembly and divergent cyclization. Beilstein J Org Chem 8:930–940. https://doi.org/10.3762/bjoc.8.105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Zhu Chen or Zhi-Gang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Meng, JP., Tang, DY. et al. Recent advances in the development of polycyclic skeletons via Ugi reaction cascades. Mol Divers 22, 503–516 (2018). https://doi.org/10.1007/s11030-017-9811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9811-2

Keywords

Navigation