Advertisement

Molecular Diversity

, Volume 22, Issue 2, pp 291–303 | Cite as

One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process

  • Mehdi Ghandi
  • Saleh Salahi
  • Abuzar Taheri
  • Alireza Abbasi
Original Article
  • 160 Downloads

Abstract

A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.

Graphical Abstract

Keywords

Ugi-azide Tetrahydropyrrolo[1, 2-a]pyrazine Tetrazole MCRs 

Notes

Acknowledgements

We acknowledge the University of Tehran for financial support of this research.

Supplementary material

11030_2017_9801_MOESM1_ESM.pdf (4 mb)
Supplementary material 1 (pdf 4081 KB)

References

  1. 1.
    Liang B, Kalidindi S, Porco JA Jr, Stephenson CR (2000) Multicomponent reaction discovery: three-component synthesis of spirooxindoles. Org Lett 12:572–575.  https://doi.org/10.1021/ol902764k CrossRefGoogle Scholar
  2. 2.
    Ganem B (2009) Strategies for innovation in multicomponent reaction design. Acc Chem Res 42:463–472.  https://doi.org/10.1021/ar800214s CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cui SL, Lin XF, Wang YG (2006) Novel and efficient synthesis of iminocoumarins via copper-catalyzed multicomponent reaction. Org Lett 8:4517–4520.  https://doi.org/10.1021/ol061685w CrossRefPubMedGoogle Scholar
  4. 4.
    Kriis K, Ausmees K, Pehk T, Lopp M, Kanger T (2010) A novel diastereoselective multicomponent cascade reaction. Org Lett 12:2230–2233.  https://doi.org/10.1021/ol1005714 CrossRefPubMedGoogle Scholar
  5. 5.
    Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89.  https://doi.org/10.1021/cr0505728 CrossRefPubMedGoogle Scholar
  6. 6.
    Banfi L, Riva R (2005) The Passerini reaction. Org React 65:1–140.  https://doi.org/10.1002/0471264180.or065.01 Google Scholar
  7. 7.
    Lu K, Luo T, Xiang Z, You Z, Fathi R, Chen J, Yang Z (2005) A concise and diversity-oriented strategy for the synthesis of benzofurans and indoles via Ugi and Diels–Alder reactions. J Comb Chem 7:958–967.  https://doi.org/10.1021/cc050099b CrossRefPubMedGoogle Scholar
  8. 8.
    Bienaymé H, Hulme C, Oddon G, Schmidt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6:3321–3329.  https://doi.org/10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A
  9. 9.
    Orru RVA, Greef MDE (2003) Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis  https://doi.org/10.1055/s-2003-40507
  10. 10.
    Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210.  https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
  11. 11.
    Lee D, Sello JK, Schreiber SL (2000) Pairwise use of complexity-generating reactions in diversity-oriented organic synthesis. Org Lett 2:709–712.  https://doi.org/10.1021/ol005574n CrossRefPubMedGoogle Scholar
  12. 12.
    Armstrong RW, Combs AP, Tempest PA, Brown AD, Thomas AK (1996) Multiple-component condensation strategies for combinatorial synthesis. Acc Chem Res 29:123–131.  https://doi.org/10.1021/ar950209v CrossRefGoogle Scholar
  13. 13.
    Ugi I, Werner B, Dömling A (2003) The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules 8:53–66.  https://doi.org/10.3390/80100053 CrossRefGoogle Scholar
  14. 14.
    Hall DG, Manku S, Wang F (2001) Solution- and solid-phase strategies for the design, synthesis, and screening of libraries based on natural product templates: a comprehensive survey. J Comb Chem 3:125–150.  https://doi.org/10.1021/cc0001001 CrossRefPubMedGoogle Scholar
  15. 15.
    Nicolaou KC, Pfefferkorn JA, Mitchell HJ, Roecker AJ, Barluenga S, Cao GQ, Affleck RL, Lillig JE (2000) Natural product-like combinatorial libraries based on privileged structures. 2. Construction of a 10,000-membered benzopyran library by directed split- and-pool chemistry using nanokans and optical encoding. J Am Chem Soc 122:9954–9967.  https://doi.org/10.1021/ja002034c CrossRefGoogle Scholar
  16. 16.
    Wipt P, Reeves JT, Balachandran R, Giuliano KA, Hamel E, Day BW (2000) Synthesis and biological evaluation of a focused mixture library of analogues of the antimitotic marine natural product Curacin A. J Am Chem Soc 122:9391–9395.  https://doi.org/10.1021/ja002213u CrossRefGoogle Scholar
  17. 17.
    Boger DL, Fink BE, Hedrick MP (2000) Total synthesis of distamycin A and 2640 analogues: a solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity. J Am Chem Soc 122:6382–6394.  https://doi.org/10.1021/ja994192d CrossRefGoogle Scholar
  18. 18.
    Ghandi M, Sherafat F, Sadeghzadeh M, Alirezapour B (2016) One-pot synthesis and sigma receptor binding studies of novel spirocyclic-2,6-diketopiperazine derivatives. Bioorg Med Chem Lett 26:2676–2679.  https://doi.org/10.1016/j.bmcl.2016.04.010 CrossRefPubMedGoogle Scholar
  19. 19.
    Ghandi M, Zarezadeh N, Abbasi A (2016) One-pot tandem Ugi-4CR/S\(N\)Ar approach to highly functionalized quino[2,3-\(b\)][1,5]benzoxazepines. Mol Divers 20:483–495.  https://doi.org/10.1007/s11030-015-9651-x CrossRefPubMedGoogle Scholar
  20. 20.
    Azuaje J, Pérez-Rubio JM, Yaziji V, El Maatougui A, González-Gomez JC, Sánchez- Pedregal VM, Navarro-Vázquez A, Masaguer CF, Teijeira M, Sotelo E (2015) Integrated Ugi-based assembly of functionally, skeletally, and stereochemically diverse 1,4-benzodiazepin-2-ones. J Org Chem 80:1533–1549.  https://doi.org/10.1021/jo502382q CrossRefPubMedGoogle Scholar
  21. 21.
    Xu Z, De Moliner F, Cappelli AP, Hulme C (2013) Aldol reactions in multicomponent reaction based domino pathways: a multipurpose enabling tool in heterocyclic chemistry. Org Lett 15:2738–2741.  https://doi.org/10.1021/ol401068u CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Che C, Li S, Yu SZ, Li F, Xin S, Zhou L, Lin S, Yang Z (2013) One-pot syntheses of isoquinolin-3-ones and benzo-1,4-diazepin-2,5-diones utilizing Ugi-4CR post-transformation strategy. ACS Comb Sci 15:202–207.  https://doi.org/10.1021/co400001h CrossRefPubMedGoogle Scholar
  23. 23.
    Sinha MK, Khoury K, Herdtweckb E, Dömling A (2013) Various cyclization scaffolds by a truly Ugi 4-CR. Org Biomol Chem 11:4792–4796.  https://doi.org/10.1039/C3OB40523K CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ghandi M, Zarezadeh N, Abbasi A (2015) One-pot synthesis of spiropyrroloquinolineisoindolinone and their aza-analogs via the Ugi-4CR/metal-free intramolecular bis-annulation process. Org Biomol Chem 13:8211–8220.  https://doi.org/10.1039/c5ob01095k
  25. 25.
    Medda F, Martinez-Ariza G, Hulme C (2015) A facile and concise route toward the synthesis of novel imidazo-tetrazolodiazepinones via post-condensation modifications of the Ugi-azide adduct. Tetrahedron Lett 56:5295–5298.  https://doi.org/10.1016/j.tetlet.2015.07.083 CrossRefGoogle Scholar
  26. 26.
    Cano PA, Islas-Jácome A, González-Marrero J, Yépez-Mulia L, Calzada F, Gámez- Montaño R (2014) Synthesis of 3-tetrazolylmethyl-4\(H\)-chromen-4-ones via Ugi- azide and biological evaluation against Entamoeba histolytica, Giardia lamblia and Trichomona vaginalis. Bioorg Med Chem 22:1370–1376.  https://doi.org/10.1016/j.bmc.2013.12.069 CrossRefPubMedGoogle Scholar
  27. 27.
    Safa KD, Shokri T, Abbasi H, Teimuri-Mofrad R (2014) One-pot synthesis of new 1,5-disubstituted tetrazoles bearing 2,2-bis(trimethylsilyl)ethenyl groups via the Ugi four-component condensation reaction catalyzed by \(\text{ MgBr }_{2}\cdot \)2\(\text{ Et }_{2}\)O. J Heterocycl Chem 51:80–84.  https://doi.org/10.1002/jhet.1858 CrossRefGoogle Scholar
  28. 28.
    Gunn SJ, Baker A, Bertram RD, Warriner SL (2007) A novel approach to the solid-phrase synthesis of peptides with a tetrazole at the C-terminus. Synlett 2643–2646.  https://doi.org/10.1055/s-2007-986661
  29. 29.
    Gunawan S, Hulme C (2013) Bifunctional building blocks in the Ugi-azide condensation reaction: a general strategy toward exploration of new molecular diversity. Org Biomol Chem 11:6036–6046.  https://doi.org/10.1039/C3OB40900G CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ramezanpour S, Balalaie S, Rominger F, Alavijeh NS, Bijanzadeh HR (2013) Facile, efficient and diastereoselective synthesis of \(\alpha \)-hydrazine tetrazoles through a novel one-pot four-component reaction. Tetrahedron 69:10718–10723.  https://doi.org/10.1016/j.tet.2013.10.062 CrossRefGoogle Scholar
  31. 31.
    Lin XF, Li Y, Li SY, Xiao ZK, Lu JM (2012) NHC-Pd(II)-Im (NHC = \(N\)-heterocyclic carbene, Im = 1-methylimidazole) complex catalyzed coupling reaction of arylboronic acids with carboxylic acid anhydrides in water. Tetrahedron 68:5806–5809.  https://doi.org/10.1016/j.tet.2012.05.016 CrossRefGoogle Scholar
  32. 32.
    El Kaim L, Grimaud L (2009) Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 65:2153–2171.  https://doi.org/10.1016/j.tet.2008.12.002 CrossRefGoogle Scholar
  33. 33.
    Marcos SF, Marcaccini S, Menchi G, Pepinob R, Torroba T (2008) Studies on isocyanides: synthesis of tetrazolyl-isoindolinones via tandem Ugi four-component condensation/intramolecular amidation. Tetrahedron Lett 49:149–152.  https://doi.org/10.1016/j.tetlet.2007.10.154 CrossRefGoogle Scholar
  34. 34.
    Soeta T, Tamura K, Fujinami S, Ukaji Y (2013) A three-component reaction of \(C,N\)-cyclic \(N^{\prime }\)-acyl azomethine imines, isocyanides, and azide compounds: effective synthesis of 1,5-disubstituted tetrazoles with tetrahydroisoquinoline skeletons. Org Biomol Chem 11:2168–2174.  https://doi.org/10.1039/C3OB27297D CrossRefPubMedGoogle Scholar
  35. 35.
    Shinde AH, Archith N, Srilaxmi M, Sharada DS (2014) Four-component, five- centered, one-pot synthesis of 1-(1\(H\)-tetrazol-5-yl)-2,3,4,9-tetrahydro-1\(H\)-pyrido[3,4- \(b\)]indole derivatives. Tetrahedron Lett 55:6821–6826.  https://doi.org/10.1016/j.tetlet.2014.10.076 CrossRefGoogle Scholar
  36. 36.
    Reddy BVS, Kota K, Rao BM, Sridhar B, Mukkanti K (2016) Four-component, five- centered, one-pot synthesis of 1-(1\(H\)-tetrazol-5-yl)-2,3,4,9-tetrahydro-1\(H\)-pyrido[3,4- \(b\)]indole derivatives. Tetrahedron Lett 57:4529–4532.  https://doi.org/10.1016/j.tetlet.2016.08.067 CrossRefGoogle Scholar
  37. 37.
    Nixey T, Kelly M, Hulme C (2000) The one-pot solution phase preparation of fused tetrazole-ketopiperazines. Tetrahedron Lett 41:8729–8733.  https://doi.org/10.1016/S0040-4039(00)01563-X CrossRefGoogle Scholar
  38. 38.
    Hulme C, Gore V (2003) “Multi-component reactions: emerging chemistry in drug discovery" from xylocain to crixivan. Curr Med Chem 10:51–80.  https://doi.org/10.2174/0929867033368600 CrossRefPubMedGoogle Scholar
  39. 39.
    Gunawan S, Ayaz M, De Moliner F, Frett B, Kaiser C, Patrick N, Xu Z, Hulme C (2012) Synthesis of tetrazolo-fused benzodiazepines and benzodiazepinones by a two-step protocol using an Ugi-azide reaction for initial diversity generation. Tetrahedron 68:5606–5611.  https://doi.org/10.1016/j.tet.2012.04.068 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Maleki A, Sarvary A (2015) Synthesis of tetrazoles via isocyanide-based reactions. RSC Adv 5:60938–60955.  https://doi.org/10.1039/C5RA11531K CrossRefGoogle Scholar
  41. 41.
    Cárdenas-Galindo LE, Islas-Jácome A, Colmenero-Martínez KM, Martínez-Richa A, Gámez-Montaño R (2015) Synthesis of novel bis-1,5-disubstituted-1\(H\)-tetrazoles by an efficient catalyst-free Ugi-azide repetitive process. Molecules 20:1519–1526.  https://doi.org/10.3390/molecules20011519 CrossRefPubMedGoogle Scholar
  42. 42.
    Beusen DD, Zabrocki J, Slomczynska U, Head RD, Kao J, Marshall GR (1995) Conformational mimicry: synthesis and solution conformation of a cyclic somatostatin hexapeptide containing a tetrazole cis amide bond surrogate. Biopolymers 36:181–200.  https://doi.org/10.1002/bip.360360207 CrossRefPubMedGoogle Scholar
  43. 43.
    Zabrocki J Jr, Dunbar JB, Marshall KW, Toth MV, Marshall GR (1992) Conformational mimicry. 3. Synthesis and incorporation of 1,5-disubstituted tetrazole dipeptide analogs into peptides with preservation of chiral integrity: bradykinin. J Org Chem 57:202–209.  https://doi.org/10.1021/jo00027a038 CrossRefGoogle Scholar
  44. 44.
    Zabrocki J, Smith GD, Dunbar JB, Iijima JH, Marshall GR (1988) Conformational mimicry. 1. 1,5-Disubstituted tetrazole ring as a surrogate for the cis amide bond. J Am Chem Soc 110:5875–5880.  https://doi.org/10.1021/ja00225a045 CrossRefGoogle Scholar
  45. 45.
    Nagai SI, Ueda T, Sugiura S, Nagatsu A, Murakami N, Sakakibara J, Fujita M, Hotta Y (1998) Synthesis and central nervous system stimulant activity of 5,8-methanoquinazolines fused with 1,2,4-triazole, tetrazole and 1,2,4-triazine. J Heterocycl Chem 35:325–327.  https://doi.org/10.1002/jhet.5570350211 CrossRefGoogle Scholar
  46. 46.
    Yan YD, Kim HK, Seo KH, Lee WS, Lee GS, Woo JS, Yong CS, Choi HG (2010) The physicochemical properties, in vitro metabolism and pharmacokinetics of a novel ester prodrug of EXP3174. Mol Pharm 7:2132–2140.  https://doi.org/10.1021/mp100166c CrossRefPubMedGoogle Scholar
  47. 47.
    Senthil Kumar N, Reddy SB, Sinha BK, Mukkantiand K, Dandala R (2009) New and improved manufacturing process for valsartan. Org Process Res Dev 13:1185–1189.  https://doi.org/10.1021/op9000912 CrossRefGoogle Scholar
  48. 48.
    Tatsushima Y, Egashira N, Matsushita N, Kurobe K, Kawashiri T, Yano T, Oishi R (2011) Pemirolast reduces cisplatin-induced kaolin intake in rats. Eur J Pharmacol 661:57–62.  https://doi.org/10.1016/j.ejphar.2011.04.026 CrossRefPubMedGoogle Scholar
  49. 49.
    Pandeeswaran M, El-Mossalamy EH, Elango KP (2011) Spectroscopic studies on the interaction of cilostazole with iodine and 2,3-dichloro-5,6-dicyanobenzoquinone. Spectrochim Acta A 78:375–382.  https://doi.org/10.1016/j.saa.2010.023 CrossRefGoogle Scholar
  50. 50.
    Huynh MHV, Coburn MD, Meyer TJ, Wetzler M (2006) Green primary explosives: 5-Nitrotetrazolato-\(N^{2}\)-ferrate hierarchies. Proc Natl Acad Sci USA 103:10322–10327.  https://doi.org/10.1073/pnas.0604241103 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gao EQ, Liu N, Cheng AL, Gao S (2007) Novel frustrated magnetic lattice based on triangular [\(\text{ Mn }_{3}(\mu _{3}\)-F)] clusters with tetrazole ligands. Chem Commun.  https://doi.org/10.1039/b701840a
  52. 52.
    Likhosherstov AM, Filippova OV, Peresada VP, Kryzhanovskii SA, Vititnova MB, Kaverina NV, Reznikov KM (2003) Azacycloalkanes. XXXIV. synthesis and antiarrhythmic activity of 2-(2\(\prime \)-R-2\(\prime \)-hydroxyethyl)-1,2,3,4-tetra-hydro-pyrrolo-[1,2-a]pyrazines. Pharm Chem J 37:6–9.  https://doi.org/10.1023/A:1023634625558 CrossRefGoogle Scholar
  53. 53.
    Seredenin SB, Voronina TA, Likhosherstov AM, Peresada YP, Molodavkin GM, Halikas (1995) 1,2,3,4-tetrahydropyrrolo-[1,2-\(a\)]-pyrazine derivatives. U.S. Patent 5,378,846Google Scholar
  54. 54.
    Abou-Gharbia M, Freed ME, McCaully RJ, Silver PJ, Wendt RL (1984) Tetrahydropyrrolo[1,2-a]quinoxalines and tetrahydropyrrolo[1,2-a]pyrido[3,2-a]pyrazines: vascular smooth muscle relaxants and antihypertensive agents. J Med Chem 27:1743–1746.  https://doi.org/10.1021/jm00378a039 CrossRefPubMedGoogle Scholar
  55. 55.
    HeY Lin M, Li Z, Liang X, Li G, Antilla JC (2011) Direct synthesis of chiral 1,2,3,4-tetrahydropyrrolo[1,2-\(a\)]pyrazines via a catalytic asymmetric intramolecular aza-Friedel–Crafts reaction. Org Lett 1:4490–4493.  https://doi.org/10.1021/ol2018328 Google Scholar
  56. 56.
    Katritzky AR, Jain R, Xu YJ, Steel PJ (2002) Novel routes to 1,2,3,4- tetrahydropyrrolo[1,2-\(a\)]pyrazines and 5,6,9,10,11,11a-hexahydro-8\(H\)-pyrido[1,2- \(a\)]pyrrolo[2,1-\(c\)]pyrazines. J Org Chem 67:8220–8223.  https://doi.org/10.1021/jo020371t CrossRefPubMedGoogle Scholar
  57. 57.
    Ghandi M, Sherafat F (2017) Expedient access to novel bis-tetrazolopiperazines via Ugi-azide reactions. J Heterocycl Chem 54:1396–1403.  https://doi.org/10.1002/jhet.2720 CrossRefGoogle Scholar
  58. 58.
    Ghandi M, Rahimi S, Zarezadeh N (2017) Synthesis of novel tetrazole containing Quinoline and 2,3,4,9-tetrahydro-1H-\(\beta \)-carboline derivatives. J Heterocycl Chem 54:102–109.  https://doi.org/10.1002/jhet.2546 CrossRefGoogle Scholar
  59. 59.
    Ghandi M, Salahi S, Hasani M (2011) A mild, expedient, one-pot trifluoromethanesulfonic anhydride mediated synthesis of \(N\)-arylimidates. Tetrahedron Lett 52:270–273.  https://doi.org/10.1016/j.tetlet.2010.11.019 CrossRefGoogle Scholar
  60. 60.
    Ghandi M, Hasani M, Salahi S (2012) Expedient one-pot synthesis of \(N\)- aryliminoethers via mild electrophilic activation of secondary amides. Monatsh Chem 143:455–460.  https://doi.org/10.1007/s00706-011-0603-6 CrossRefGoogle Scholar
  61. 61.
    Ghandi M, Jameá AH (2011) Pyridine-mediated, one-pot, stereoselective synthesis of acyclic enaminones. Tetrahedron Lett 52:4005–4007.  https://doi.org/10.1016/j.tetlet.2011.05.112 CrossRefGoogle Scholar
  62. 62.
    Gualandi A, Cerisoli L, Monari M, Savoia D (2011) Asymmetric synthesis of 1- substituted 1,2,3,4-tetrahydropyrrolo[1,2-\(a\)]pyrazines. Synthesis  https://doi.org/10.1055/s-0030-1258436
  63. 63.
    Hashimoto T, Omote M, Maruoka K (2011) Asymmetric inverse-electron-demand 1,3-dipolar cycloaddition of C, N-cyclic azomethine imines: an umpolung strategy. Angew Chem Int Ed 50:3489–3492.  https://doi.org/10.1002/anie.201100331 CrossRefGoogle Scholar
  64. 64.
    Hashimoto T, Maeda Y, Omote M, Nakatsu H, Maruoka K (2010) Catalytic enantioselective 1,3-dipolar cycloaddition of C, N-cyclic azomethine imines with \(\alpha \),\(\beta \)- unsaturated aldehydes. J Am Chem Soc 132:4076–4077.  https://doi.org/10.1021/ja100787a
  65. 65.
    Zhang L, Liu H, Qiao G, Hou Z, Liu Y, Xiao Y, Guo H (2015) Phosphine-catalyzed highly enantioselective [3 + 3] cycloaddition of Morita-Baylis-Hillman carbonates with C, N-cyclic azomethine imines. J Am Chem Soc 137:4316–4319.  https://doi.org/10.1021/jacs.5b01138
  66. 66.
    Soeta T, Tamura K, Ukaji Y (2012) [5 + 1] Cycloaddition of \(C, N\)-cyclic \(N\prime \)-acyl azomethine imines with isocyanides. Org Lett 14:1226–1229.  https://doi.org/10.1021/ol2034542 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations