Skip to main content
Log in

Synthesis of functionalized dispiro[indoline-3,1\({^{\prime }}\)-cyclopentane-3\({^{\prime }}\),3\({^{\prime \prime }}\)-indolines] via cyclodimerization of 3-phenacylideneoxindolines with benzoylhydrazides and arylhydrazines

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The triethylamine-promoted domino cyclodimerization reaction of 3-phenacylideneoxindolines with benzohydrazides in acetonitrile afforded densely substituted dispiro[indoline-3,1\({^{\prime }}\)-cyclopentane-3\({^{\prime }}\),3\({^{\prime \prime }}\)-indolines] in good yields and with high diastereoselectivity. The similar domino reaction of 3-phenacylideneoxindoles with arylhydrazines also gave corresponding dispiro[indoline-3,1\({^{\prime }}\)-cyclopentane-3\({^{\prime }}\),3\({^{\prime \prime }}\)-indolines] with hydrazinyl or arylazo groups according to the structures of arylhydrazines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ashimori A, Bachand B, Overman LE, Poon DJ (1998) Catalytic asymmetric synthesis of quaternary carbon centers. exploratory investigations of intramolecular Heck reactions of (E)-\(\alpha \),\(\beta \)-unsaturated 2-haloanilides and analogues to form enantioenriched spirocyclic products. J Am Chem Soc 120:6477–6487

    Article  CAS  Google Scholar 

  2. Sebahar PR, Williams RM (2000) The asymmetric total synthesis of (\(+)\)-and (\(-)\)-spirotryprostatin B. J Am Chem Soc 122:5666–5667

    Article  CAS  Google Scholar 

  3. Marti C, Carreira EM (2003) Construction of spiro[pyrrolidine-3,3\({^{\prime }}\)-oxindoles] \(-\) recent applications to the synthesis of oxindole alkaloids. Eur J Org Chem 2003:2209–2219. doi:10.1002/ejoc.200300050

    Article  Google Scholar 

  4. Abdel-Rahman AH, Keshk EM, Hanna MA, El-Bady SM (2004) Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg Med Chem 12:2483–2488. doi:10.1016/j.bmc.2003.10.063

    Article  CAS  PubMed  Google Scholar 

  5. Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldmann H (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 102:17272–17277. doi:10.1073/pnas.0503647102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williams RM, Cox RJ (2003) Paraherquamides, brevianamides, and asperparalines: laboratory synthesis and biosynthesis. An interim report. Acc Chem Res 36:127–139

    Article  CAS  PubMed  Google Scholar 

  7. Dounay AB, Overman LE (2003) The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem Rev 103:2945–2964. doi:10.1021/cr020039h

    Article  CAS  PubMed  Google Scholar 

  8. Santos MMM (2014) Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron 70:9735–9757. doi:10.1016/j.tet.2014.08.005

    Article  CAS  Google Scholar 

  9. Yu B, Yu DQ, Liu HM (2015) Spirooxindoles: promising scaffolds for anticancer agents. Eur J Med Chem 97:673–698. doi:10.1016/j.ejmech.2014.06.056

    Article  CAS  PubMed  Google Scholar 

  10. Ye N, Chen H, Wold EA, Shi PY, Zhou J (2016) Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect Dis 2:382–392. doi:10.1021/acsinfecdis.6b00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotha SB, Deb AC, Lahiri K, Manivannan E (2009) Selected synthetic strategies to spirocyclics. Synthesis. Doi:10.1055/s-0028-1083300

  12. Trost BM, Brennan MK (2009) Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis. Doi:10.1055/s-0029-1216975

  13. Ball-Jones NR, Badillo JJ, Franz AK (2012) Strategies for the enantioselective synthesis of spirooxindoles. Org Biomol Chem 10:5165–5181. doi:10.1039/c2ob25184a

    Article  CAS  PubMed  Google Scholar 

  14. Singh GS, Desta ZY (2012) Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem Rev 112:6104–6155. doi:10.1021/cr300135y

    Article  CAS  PubMed  Google Scholar 

  15. Hong L, Wang R (2013) Recent Advances in Asymmetric Organocatalytic Construction of 3,3 - Spirocyclic Oxindoles. Adv Synth Catal 355:1023–1052. doi:10.1002/adsc.201200808

    Article  CAS  Google Scholar 

  16. Liu YY, Wang H, Wan JP (2013) Recent advances in diversity oriented synthesis through Isatin-based multicomponent reactions. Asian J Org Chem 2:374–386. doi:10.1002/ajoc.201200180

    Article  CAS  Google Scholar 

  17. Cao Z-Y, Wang Y-H, Zeng X-P, Zhou J (2014) Catalytic asymmetric synthesis of 3,3-disubstituted oxindoles: diazooxindole joins the field. Tetrahedron Lett 55:2571–2584. doi:10.1016/j.tetlet.2014.01.084

    Article  CAS  Google Scholar 

  18. Cheng D, Ishihara Y, Tan B, Barbas CF (2014) Organocatalytic asymmetric assembly reactions: synthesis of spirooxindoles via oganocascade strategies. ACS Catal 4:743–762. doi:10.1021/cs401172r

    Article  CAS  Google Scholar 

  19. Pavlovska TL, Redkin RG, Lipson VV, Atamanuk DV (2016) Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol Divers 20:299–344. doi:10.1007/s11030-015-9629-8

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z-M, Li N-K, Huang X-F, Wu B, Li N, Kwok C-Y, Wang Y, Wang X-W (2014) Asymmetric organocatalytic conjugate addition of dialkyl phosphites to N-unprotected isatylidene malononitriles: access to 3-phospho-2-oxindoles with chiral quaternary stereocenters. Tetrahedron 70:2406–2415. doi:10.1016/j.tet.2014.02.023

    Article  CAS  Google Scholar 

  21. Mhiri C, Boudriga S, Askri M, Knorr M, Sriram D, Yogeeswari P, Nana F, Golz C, Strohmann C (2015) Design of novel dispirooxindolopyrrolidine and dispirooxindolopyrrolothiazole derivatives as potential antitubercular agents. Bioorg Med Chem Lett 25:4308–4313. doi:10.1016/j.bmcl.2015.07.069

    Article  CAS  PubMed  Google Scholar 

  22. Sun YH, Xiong Y, Peng CQ, Li W, Xiao JA, Yang H (2015) Highly stereoselective construction of novel dispirooxindole-imidazolidines via self-1,3-dipolar cyclization of ketimines. Org Biomol Chem 13:7907–7910. doi:10.1039/c5ob00954e

    Article  CAS  PubMed  Google Scholar 

  23. Reddy BVS, Karthik G, Rajasekaran T, Sridhar B (2015) Stereoselective synthesis of highly functionalized dispirooxindoles through [3\(+\)2] cycloaddition of carbonyl ylides with 3-Arylideneoxindoles. Eur J Org Chem. Doi:10.1002/ejoc.201500002

  24. Bharitkar YP, Das M, Kumari N, Kumari MP, Hazra A, Bhayye SS, Natarajan R, Shah S, Chatterjee S, Mondal NB (2015) Synthesis of bis-pyrrolizidine-fused dispiro-oxindole analogues of curcumin via one-pot azomethine ylide cycloaddition: experimental and computational approach toward regio- and diastereoselection. Org Lett 17:4440–4443. doi:10.1021/acs.orglett.5b02085

    Article  CAS  PubMed  Google Scholar 

  25. Xia PJ, Sun YH, Xiao JA, Zhou ZF, Wen SS, Xiong Y, Ou GC, Chen XQ, Yang H (2015) Regioselectivity-tunable self-1,3-dipolar [3\(+\)3] cyclizations of azomethine ylides to assemble dispirooxindole-piperazines. J Org Chem 80:11573–11579. doi:10.1021/acs.joc.5b02088

    Article  CAS  PubMed  Google Scholar 

  26. Zhao H-W, Chen X-Q, Yang Z, Tian T, Li B, Meng W, Song X-Q, Pang H-L (2015) Highly diastereoselective synthesis of imidazolidine-dispirooxindoles via three-component [3 \(+\) 2] cycloadditions of isatins, 2-(aminomethyl)pyridine and isatin-based imines. RSC Adv 5:103116–103122. doi:10.1039/c5ra21995g

    Article  CAS  Google Scholar 

  27. Liu JC, Peng H, Lu L, Xu XB, Jiang HF, Yin BL (2016) Diastereospecific and enantioselective access to dispirooxindoles from furfurylcyclobutanols by means of a Pd-catalyzed arylative dearomatization/ring expansion cascade. Org Lett 18:6440–6443. doi:10.1021/acs.orglett.6b03339

    Article  CAS  PubMed  Google Scholar 

  28. Zhao K, Zhi Y, Li X, Puttreddy R, Rissanen K, Enders D (2016) Asymmetric synthesis of 3,3\({^{\prime }}\)-pyrrolidinyl-dispirooxindoles via a one-pot organocatalytic Mannich/deprotection/aza-Michael sequence. Chem Commun 52:2249–2252. doi:10.1039/c5cc10057g

    Article  CAS  Google Scholar 

  29. Huang W-J, Chen Q, Lin N, Long X-W, Pan W-G, Xiong Y-S, Weng J, Lu G (2017) Asymmetric synthesis of trifluoromethyl-substituted 3,3\(\prime \)-pyrrolidinyl-dispirooxindoles through organocatalytic 1,3-dipolar cycloaddition reactions. Org Chem Front 4:472–482. doi:10.1039/c6qo00723f

    Article  CAS  Google Scholar 

  30. Osman FH, El-Samahy FA, Ahmed FIS (2004) A nucleophilic addition of acetone enolate to (E)-alkyloxindolylideneacetates. Monatsh Chem 135:823–831. doi:10.1007/s00706-003-0059-4

    Article  CAS  Google Scholar 

  31. Zou Y-Q, Duan S-W, Meng X-G, Hu X-Q, Gao S, Chen J-R, Xiao W-J (2012) Visible light induced intermolecular [2\(+\)2]-cycloaddition reactions of 3-ylideneoxindoles through energy transfer pathway. Tetrahedron 68:6914–6919. doi:10.1016/j.tet.2012.06.011

    Article  CAS  Google Scholar 

  32. Drouhin P, Hurst TE, Whitwood AC, Taylor RJ (2014) Copper-mediated construction of spirocyclic bis-oxindoles via a double C–H, Ar–H coupling process. Org Lett 16:4900–4903. doi:10.1021/ol5024129

    Article  CAS  PubMed  Google Scholar 

  33. Chen R, Xu S, Fan X, Li H, Tang Y, He Z (2015) Construction of dispirocyclohexanes via amine-catalyzed [2 \(+\) 2 \(+\) 2] annulations of Morita–Baylis–Hillman acetates with exocyclic alkenes. Org Biomol Chem 13:398–408. doi:10.1039/c4ob01927j

    Article  CAS  PubMed  Google Scholar 

  34. Milanesio M, Viterbo D, And AA, Fasani E, And RB, Barzaghi M, (2000) Structural Study of the Solid-State Photoaddition Reaction of Arylidenoxindoles. J Org Chem 65:3416–3425. doi:10.1021/jo991873i

  35. Zhou R, Yang C, Liu Y, Li R, He Z (2014) Diastereoselective synthesis of functionalized spirocyclopropyl oxindoles via P(NMe2)3-mediated reductive cyclopropanation. J Org Chem 79:10709–10715. doi:10.1021/jo502106c

    Article  CAS  PubMed  Google Scholar 

  36. Karthik G, Rajasekaran T, Sridhar B, Reddy BVS (2014) Catalyst and solvent-free cyclopropanation of electron-deficient olefins with cyclic diazoamides for the synthesis of spiro[cyclopropane-1,3\({^{\prime }}\)-indolin]-2\({^{\prime }}\)-one derivatives. Tetrahedron Lett 55:7064–7067. doi:10.1016/j.tetlet.2014.10.137

    Article  CAS  Google Scholar 

  37. Gao H, Sun J, Yan CG (2014) Selective synthesis of functionalized spiro[indoline-3,2\({^{\prime }}\)-pyridines] and spiro[indoline-3,4\({^{\prime }}\)-pyridines] by Lewis acid catalyzed reactions of acetylenedicarboxylate, arylamines, and isatins. J Org Chem 79:4131–4136. doi:10.1021/jo500144z

  38. Han Y, Sheng YJ, Yan CG (2014) Convenient synthesis of triphenylphosphanylidene spiro[cyclopentane-1,3’-indolines] and spiro[cyclopent[3]ene-1,3’-indolines] via three-component reactions. Org Lett 16:2654–2657. doi:10.1021/ol5008394

    Article  CAS  PubMed  Google Scholar 

  39. Xie YJ, Sun J, Yan CG (2014) Unprecedented formation of 2-oxaspiro[bicyclo[2.2.1]heptane-6,3\({^{\prime }}\)-indoline] derivatives from reaction of 3-phenacyalideneoxindole with malononitrile or ethyl cyanoacetate. RSC Adv 4:44537–44546. doi:10.1039/c4ra06272h

    Article  CAS  Google Scholar 

  40. Sun J, Chen L, Gong H, Yan CG (2015) Convenient synthesis of functionalized spiro[indoline-3,2\({^{\prime }}\)-pyrrolizines] or spiro[indoline-3,3\({^{\prime }}\)-pyrrolidines] via multicomponent reactions. Org Biomol Chem 13:5905–5917. doi:10.1039/c5ob00437c

    Article  CAS  PubMed  Google Scholar 

  41. Shanthi G, Perumal PT (2008) An InCl\(_{\rm 3}\) catalyzed facile one-pot synthesis of novel dispiro[cyclopent-3\({^{\prime }}\)-ene]bisoxindoles. Tetrahedron Lett 49:7139–7142. doi:10.1016/j.tetlet.2008.09.152

    Article  CAS  Google Scholar 

  42. Lingam KAP, Shanmugam P, Selvakumar K (2012) Stereoselective Synthesis of Geometrically Strained, Oxindole-Appended Vinyl Cyclopropanes and Highly Substituted Cyclopentenes via Sulfur Ylide Cyclopropanation and Vinyl Cyclopropane Rearrangement. Synlett 23:278–284. doi:10.1055/s-0031-1290077

    CAS  Google Scholar 

  43. Lu L-J, Fu Q, Sun J, Yan C-G (2014) Synthesis of complex dispirocyclopentanebisoxindoles via cycloaddition reactions of 4-dimethylamino-1-alkoxycarbonylmethylpyridinium bromides with 2-oxoindolin-3-ylidene derivatives. Tetrahedron 70:2537–2545. doi:10.1016/j.tet.2014.02.050

    Article  CAS  Google Scholar 

  44. Shen G-L, Sun J, Yan C-G (2015) Construction of dispirocyclohexyl-3,3\({^{\prime }}\)-bisoxindole and dispirocyclopentyl-3,3\({^{\prime }}\)-bisoxindole via domino cycloaddition reactions of N-benzylbenzimidazolium salts with 2-(2-oxoindolin-3-ylidene)acetates. RSC Adv 5:4475–4483. doi:10.1039/c4ra13760d

    Article  CAS  Google Scholar 

  45. Tan B, Candeias NR, Barbas CF III (2011) Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst. Nat Chem 3:473–477. doi:10.1038/NCHEM.1039

    Article  CAS  PubMed  Google Scholar 

  46. Wu H, Zhang LL, Tian ZQ, Huang YD, Wang YM (2013) Highly efficient enantioselective construction of bispirooxindoles containing three stereocenters through an organocatalytic cascade Michael-cyclization reaction. Chem 19:1747–1753. doi:10.1002/chem.201203221

    Article  CAS  Google Scholar 

  47. Tan F, Cheng H-G, Feng B, Zou Y-Q, Duan S-W, Chen J-R, Xiao W-J (2013) Highly enantioselective organocatalytic Michael addition/cyclization cascade reaction of ylideneoxindoles with isothiocyanato oxindoles: A formal [3\(+\)2] cycloaddition approach to optically active bispirooxindole derivatives. Eur J Org Chem. doi:10.1002/ejoc.201300081

  48. Sun W, Zhu G, Wu C, Hong L, Wang R (2012) An organocatalytic cascade strategy for the enantioselective construction of spirocyclopentane bioxindoles containing three contiguous stereocenters and two spiro quaternary centers. Chemistry 18:6737–6741. doi:10.1002/chem.201200478

    Article  CAS  PubMed  Google Scholar 

  49. Cao YM, Shen FF, Zhang FT, Wang R (2013) Catalytic asymmetric Michael addition/cyclization of isothiocyanato oxindoles: highly efficient and versatile approach for the synthesis of 3,2’-pyrrolidinyl mono- and bi-spirooxindole frameworks. Chemistry 19:1184–1188. doi:10.1002/chem.201204114

    Article  CAS  PubMed  Google Scholar 

  50. Sun W, Hong L, Zhu G, Wang Z, Wei X, Ni J, Wang R (2014) An organocatalytic Michael–Michael cascade for the enantioselective construction of spirocyclopentane bioxindoles: control of four contiguous stereocenters. Org Lett 16:544–547. doi:10.1021/ol4034226

    Article  CAS  PubMed  Google Scholar 

  51. Sun J, Xie YJ, Yan CG (2013) Construction of dispirocyclopentanebisoxindoles via self-domino Michael-aldol reactions of 3-phenacylideneoxindoles. J Org Chem 78:8354–8365. doi:10.1021/jo4010603

  52. Shen GL, Sun J, Xie YJ, Yan CG (2016) Synthesis of densely substituted dispirocyclopentanebisoxindoles by base promoted sequential reaction of two different 3-methyleneoxindoles with thiol. Chem Select 1:1447–1451. doi:10.1002/slct.201600209

  53. Suman K, Thennarasu S (2015) Base catalysed domino and self-domino Michael–Aldol reactions: one-pot synthesis of dispirocyclopentaneoxindoles containing multiple chiral stereocenters. RSC Adv 5:23291–23302. doi:10.1039/c5ra00283d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 21572196) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank Analysis and Test Center of Yangzhou University for providing all analytical instruments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Sun or Chao-Guo Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, RY., Sun, J., Jin, G. et al. Synthesis of functionalized dispiro[indoline-3,1\({^{\prime }}\)-cyclopentane-3\({^{\prime }}\),3\({^{\prime \prime }}\)-indolines] via cyclodimerization of 3-phenacylideneoxindolines with benzoylhydrazides and arylhydrazines. Mol Divers 22, 21–36 (2018). https://doi.org/10.1007/s11030-017-9786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9786-z

Keywords

Navigation