Cheminformatic characterization of natural products from Panama


In this work, we discuss the characterization and diversity analysis of 354 natural products (NPs) from Panama, systematically analyzed for the first time. The in-house database was compared to NPs from Brazil, compounds from Traditional Chinese Medicine, natural and semisynthetic collections used in high-throughput screening, and compounds from ChEMBL. An analysis of the “global diversity” was conducted using molecular properties of pharmaceutical interest, three molecular fingerprints of different design, molecular scaffolds, and molecular complexity. The global diversity was visualized using consensus diversity plots that revealed that the secondary metabolites in the Panamanian flora have a large scaffold diversity as compared to other composite databases and also have several unique scaffolds. The large scaffold diversity is in agreement with the broad range of biological activities that this collection of NPs from Panama has shown. This study also provided further quantitative evidence of the large structural complexity of NPs. The results obtained in this study support that NPs from Panama are promising candidates to identify selective molecules and are suitable sources of compounds for virtual screening campaigns.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8



Natural products


NPs database of CIFLORPAN, The University of Panama, Republic of Panama


NPs database of UEFS, The State University of Feira De Santana, Bahia, Brazil


NPs screening compounds


Semisynthetic screening compounds


Traditional Chinese Medicine, Taiwan


Consensus diversity plots


Extended connectivity fingerprints


Molecular Access System keys


Cumulative distribution function


Molecular operating environment


Principal component analysis


Molecular equivalent indices


Cyclic system recovery

Mol. Glob.:

Molecular globularity

\(\hbox {Fsp}^{3}\) :

Fraction of sp3-hybridized atoms


Fraction of chiral centers


Principal moment of inertia


Ratio of normalized moment of inertia


  1. 1.

    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 9:629–661. doi:10.1021/acs.jnatprod.5b01055

    Article  Google Scholar 

  2. 2.

    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. doi:10.1021/np200906s

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Hong J (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15:350–354. doi:10.1016/j.cbpa.2011.03.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Schreiber SL (2009) Organic chemistry: molecular diversity by design. Nature 457:153–154. doi:10.1038/457153a

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Schneider G, Grabowski K (2007) Properties and architecture of drugs and natural products revisited. Curr Chem Biol 1:115–127. doi:10.2174/2212796810701010115

    Google Scholar 

  7. 7.

    Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695. doi:10.1016/j.bbagen.2013.02.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sen S, Prabhu G, Bathula C, Hati S (2014) Diversity-oriented asymmetric synthesis. Synthesis 46:2099–2121. doi:10.1055/s-0033-1341247

    CAS  Article  Google Scholar 

  9. 9.

    Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361. doi:10.1016/j.cbpa

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wetzel S, Bon RS, Kumar K (2011) Biology-oriented synthesis. Angew Chem Int Ed Engl 50:10800–10826. doi:10.1002/anie.201007004

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    van Hattum H, Waldmann H (2014) Biology-oriented synthesis: harnessing the power of evolution. J Am Chem Soc 136:11853–11859. doi:10.1021/ja505861d

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wach JY, Gademann K (2012) Reduce to the maximum: truncated natural products as powerful modulators of biological processes. Synlett 2012:163–170. doi:10.1055/s-0031-1290125

    Article  Google Scholar 

  13. 13.

    Feher M, Schmidt JM (2003) Property distribution: differences between drugs, natural products, and molecule from combinatorial chemistry. J Chem Inf Model 43:218–227. doi:10.1021/ci0200467

    CAS  Google Scholar 

  14. 14.

    Hert J, Irwin JJ, Laggner C, Keiser MJ, Shoichet BK (2009) Quantifying biogenic bias in screening libraries. Nat Chem Biol 5:479–483. doi:10.1038/nchembio.180

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Schenone M, Dancik V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240. doi:10.1038/nchembio.1199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Correa MD, Galdames C, Stapf S (2004) Catálogo de plantas vasculares de Panamá. Editora Novo Art, SA, Panamá

    Google Scholar 

  17. 17.

    Caballero-George C, Gupta MP (2011) A quarter century of pharmacognostic research on Panamanian flora: a review. Planta Med 77:1–14. doi:10.1055/s-0030-1271187

    Article  Google Scholar 

  18. 18.

    Gupta MP, Marston A, Hostettman K (1999) Bioactive compounds from Panamanian plants. In: Hostettmann K, Gupta MP, Marston A (eds) Chemistry, biological and pharmacological properties of medicinal plants from the Americas. Harwood Academic Publishers, Newark, pp 143–159

    Google Scholar 

  19. 19.

    Medina-Franco JL, Mayorga-Martínez K, Giulianotti MA, Houghten RA, Pinilla C (2008) Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Design 4:322–333. doi:10.2174/157340908786786010

    CAS  Article  Google Scholar 

  20. 20.

    Reutlinger M, Schneider G (2012) Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. J Mol Graph Model 34:108–117. doi:10.1016/j.jmgm.2011.12.006

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    González-Medina M, Prieto-Martínez FD, Owen JR, Medina-Franco JL (2016) Consensus diversity plots: a global diversity analysis of chemical libraries. J Cheminform 8:63. doi:10.1186/s13321-016-0176-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Valli M, dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I, Andricopulo AD, Bolzani VS (2013) Development of a natural products database from the biodiversity of Brazil. J Nat Prod 76:439–444. doi:10.1021/np3006875

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    AnlytiCon. July 14, 2017)

  24. 24.

    Chen CY (2011) TCM database@Taiwan: the world’s largest traditional chinese medicine database for drug screening in silico. PLoS ONE 6:e15939. doi:10.1371/journal.pone.0015939

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrian-Uhalte E, Davies M, Dedman N, Karlsson A, Magarinos MP, Overington JP, Papadatos G, Smit I, Leach AR (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–d54. doi:10.1093/nar/gkw1074

    Article  PubMed  Google Scholar 

  26. 26.

    Molecular Operating Environment (MOE) 2014.08. Chemical computing group, Montreal. Accessed 14 July, 2017

  27. 27.

    Singh N, Sun H, Chaudhury S, AbdulHameed MDM, Wallqvist A, Tawa G (2012) A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space. J Cheminform 4:4. doi:10.1186/1758-2946-4-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA. Accessed 14 July, 2017

  29. 29.

    Osolodkin DI, Radchenko EV, Orlov AA, Voronkov AE, Palyulin VA, Zefirov NS (2015) Progress in visual representations of chemical space. Expert Opin Drug Discov 10(9):959–973. doi:10.1517/17460441

    Article  PubMed  Google Scholar 

  30. 30.

    Ringner M (2008) What is principal component analysis? Nat Biotechnol 26:303–304. doi:10.1038/nbt0308-303

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Clemons PA, Wilson JA, Dančík V, Muller S, Carrinski HA, Wagner BK, Koehler AN, Schreiber SL (2011) Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proc Natl Acad Sci USA 108:6817–6822. doi:10.1073/pnas.1015024108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Djuric SW, Akritopoulou-Zanze I, Cox PB, Galasinski S (2010) Compound collection enhancement and paradigms for high-throughput screening-an update. Annu Rep Med Chem 45:409–428. doi:10.1016/S0065-7743(10)45025-3

    CAS  Article  Google Scholar 

  33. 33.

    Sander T, Freyss J, Von Korff M, Rufener C (2015) Datawarrior: An open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473. doi:10.1021/ci500588j

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Rogers D, Brown R, Hahn M (2005) Using extended-connectivity fingerprints with laplacian-modified bayesian analysis in high-throughput screening. J Biomol Screen 10:682–686. doi:10.1177/1087057105281365

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hert J, Willet P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuff enhauer A (2004) Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures. Org Biomol Chem 2:3256–3266. doi:10.1039/B409865J

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Owen JR, Nabney IT, Medina-Franco JL, López-Vallejo F (2011) Visualization of molecular fingerprints. J Chem Inf Model 51:1552–1563. doi:10.1021/ci1004042

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Xu Y-J, Johnson M (2002) Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. J Chem Inf Comput Sci 42:912–926. doi:10.1021/ci025535l

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Xu Y-J, Johnson M (2001) Algorithm for naming molecular equivalence classes represented by labeled pseudographs. J Chem Inf Comput Sci 41:181–185. doi:10.1021/ci0003911

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Lopez-Vallejo F, Castillo R, Yepez-Mulia L, Medina-Franco JL (2011) Benzotriazoles and indazoles are scaffolds with biological activity against Entamoeba histolytica. J Biomol Screen 16:862–868. doi:10.1177/1087057111414902

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Hu Y, Bajorath J (2015) Quantifying the tendency of therapeutic target proteins to bind promiscuous or selective compounds. PLoS ONE 10:e0126838. doi:10.1371/journal.pone.0126838

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Lipkus AH, Yuan Q, Lucas KA, Funk SA, Bartelt WF 3rd, Schenck RJ, Trippe AJ (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS registry. J Org Chem 73:4443–4451. doi:10.1021/jo8001276

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Krier M, Bret G, Rognan D (2006) Assessing the scaffold diversity of screening libraries. J Chem Inf Model 46:512–524. doi:10.1021/ci050352v

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Medina-Franco JL, Martínez-Mayorga K, Bender A, Scior T (2009) Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR Comb Sci 28:1551–1560. doi:10.1002/qsar.200960069

    CAS  Article  Google Scholar 

  44. 44.

    González-Medina M, Owen J, El-Elimat T, Pearce C, Oberlies N, Figueroa M, Medina-Franco J (2017) Scaffold diversity of fungal metabolites. Front Pharmacol 8:180. doi:10.3389/fphar.2017.00180

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Godden JW, Xue L, Bajorath J (2000) Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients. J Chem Inf Comput Sci 40:163–166. doi:10.1021/ci990316u

  46. 46.

    Lovering F, Bikker J, Humblet C (2009) Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 52:6752–6756. doi:10.1021/jm901241e

  47. 47.

    González-Medina M, Prieto-Martínez FD, Naveja J, Méndez-Lucio O, El-Elimat T, Pearce CJ, Oberlies NH, Figueroa M, Medina-Franco JL (2016) Chemoinformatic expedition of the chemical space of fungal products. Future Med Chem 8:1399–1412. doi:10.4155/fmc-2016-0079

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Clemons PA, Bodycombe NE, Carrinski HA, Wilson JA, Shamji AF, Wagner BK, Koehler AN, Schreiber SL (2010) Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 107:18787–18792. doi:10.1073/pnas.1012741107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Meyer AY (1986) Molecular mechanics and molecular shape. III. Surface area and cross-sectional areas of organic molecules. J Comput Chem 7:144–152. doi:10.1002/jcc.540070207

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Sauer WHB, Schwarz MK (2003) Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J Chem Inf Comput Sci 43:987–1003. doi:10.1021/ci025599w

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Méndez-Lucio O, Medina-Franco JL (2017) The many roles of molecular complexity in drug discovery. Drug Discov Today 22:120–126. doi:10.1016/j.drudis.2016.08.009

    Article  PubMed  Google Scholar 

Download references


We thank the Faculty of Chemistry of the Univer sidad Nacional Autónoma de México for granting a postdoctoral stay. Authors thank the research group DIFACQUIM for their collaboration. DAO thanks the Office of Vice President for Academic affairs of the University of Panama for granting paid leave of absence for the accomplishment of the postdoctoral internship at UNAM. MPG and DAO acknowledge SNI awards from SENACYT of Panama. We also thank funding from the ‘Programa de Apoyo a la Investigaciónn y el Posgrado (PAIP) 50009163, Facultad de Química, UNAM.

Author information



Corresponding authors

Correspondence to Dionisio A. Olmedo or José L. Medina-Franco.

Ethics declarations

Conflict of interest

Authors declare that there is no financial or commercial conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 627 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olmedo, D.A., González-Medina, M., Gupta, M.P. et al. Cheminformatic characterization of natural products from Panama. Mol Divers 21, 779–789 (2017).

Download citation


  • Cheminformatics
  • Chemical space
  • Chemical diversity
  • Consensus diversity plots
  • Natural products
  • Structural similarity
  • Panamanian biodiversity