Skip to main content
Log in

Synthesis of novel 7-aryl and 7-spiropyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine derivatives and their study as AChE inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient route for the synthesis of novel 7-aryl and 7-spiropyrazolo[4\(^{\prime }\),3\(^{\prime }\):5,6]pyrido[2,3-d]pyrimidine derivatives is described. These compounds were obtained by a cyclocondensation reaction between pyrazolopyridinediamines 4 and aldehydes 5 or cyclic ketones 6 in the presence of acetic acid as catalyst. This procedure provides the desired compounds in good yields under a simple two-step methodology. The obtained compounds were evaluated as AChE inhibitors and showed weak AChe inhibition with \(\hbox {IC}_{50} = 115{-}470 \, \upmu \hbox {M}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Rahmati A (2010) Synthesis of 4-aryl-3-methyl-6-oxo-4,5,6,7-tetrahydro-2\(H\)-pyrazolo[3,4-\(b\)]pyridine-5-carbonitrile via a one-pot, three-component reaction. Tetrahedron Lett 51:2967–2970. doi:10.1016/j.tetlet.2010.03.109

    Article  CAS  Google Scholar 

  2. Shi DQ, Shi SH, Kim ZB, Huang S (2008) A novel and efficient one-pot synthesis of furo[3\(^{\prime }\),4\(^{\prime }\):5,6]pyrido[2,3-\(c\)]pyrazole derivatives using organocatalysts. Tetrahedron 64:2425–2432. doi:10.1016/j.tet.2007.12.053

    Article  CAS  Google Scholar 

  3. Chebanov VA, Sakhno YI, Desenko VN (2007) Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron 63:1229–1242. doi:10.1016/j.tet.2006.11.048

    Article  CAS  Google Scholar 

  4. Nikpassand M, Mamaghani M, Tabatabaeian K (2009) An efficient one-pot three-component synthesis of fused 1,4-dihydropyridines using HY-zeolit. Molecules 14:1468–1474. doi:10.3390/molecules14041468

    Article  CAS  PubMed  Google Scholar 

  5. Quiroga J, Cruz S, Insuasty B, Abonia R, Nogueras M, Cobo J (2006) Three-component synthesis of hexahydropyridopyrimidine-spirocyclohexanetriones induced by microwave. Tetrahedron Lett 47:27–30. doi:10.1016/j.tetlet.2005.10.120

    Article  CAS  Google Scholar 

  6. Mont N, Teixido J, Borrell J, Kappeb O (2003) A three-component synthesis of pyrido[2,3-\(d\)]pyrimidines. Tetrahedron Lett 44:5385–5387. doi:10.1016/S0040-4039(03)01306-6

    Article  CAS  Google Scholar 

  7. Kappe CO (1993) 100 year of the Biginelli dihydropyrimidine synthesis. Tetrahedron 49:6937–6963. doi:10.1016/S0040-4020(01)87971-0

    Article  CAS  Google Scholar 

  8. Hassan Hilmy KM, Khalifa MMA, Allah Hawata MA, AboAlzeen Keshk RM, El-Torgman A (2010) Synthesis of new pyrrolo[2,3-\(d\)]pyrimidine derivatives as antibacterial and antifungal agents. Eur J Med Chem 45:5243–5250. doi:10.1016/j.ejmech.2010.08.043

    Article  CAS  Google Scholar 

  9. Aliaga MJ, Ramon DJ, Yus M (2010) Impregnated copper on magnetite: an efficient and green catalyst for the multicomponent preparation of propargylamines under solvent free conditions. Org Biomol Chem 8:43–49. doi:10.1039/B917923B

    Article  CAS  PubMed  Google Scholar 

  10. Kanth SR, Reddy GV, Kishore KH, Rao PS, Narsaiah B, Murthy US (2006) Convenient synthesis of novel 4-substitutedamino-5-trifluoromethyl-2,7-disubstituted pyrido[2,3-\(d\)] pyrimidines and their antibacterial activity. Eur J Med Chem 41:1011–1020. doi:10.1016/j.ejmech.2006.03.028

    Article  CAS  Google Scholar 

  11. Edupuganti R, Wang Q, Tavares CDJ, Chitjian CA, Bachman JL, Ren P, Anslyn EV, Dalby LKN (2014) Synthesis and biological evaluation of pyrido[2,3-\(d\)]pyrimidine-2,4-dione derivatives as eEF-2K inhibitors. Bioorg Med Chem 22:4910–4916. doi:10.1016/j.bmc.2014.06.050

    Article  CAS  PubMed  Google Scholar 

  12. Heber D, Heers C, Ravens U (1993) Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido[2,3-\(d\)]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: compounds with positive inotropic activity. Pharmazie 48:537–541

    CAS  PubMed  Google Scholar 

  13. Quintela M, Peinador C, Botana L, Estevez M, Riguera R (1997) Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3\(-d\)]-pyrimidines. Bioorg Med Chem 5:543–1553. doi:10.1016/S0968-0896(97)00108-9

    Article  Google Scholar 

  14. Huang H, Hutta DA, Rinker JM, Hu H, Parsons WH, Schubert C, DesJarlais RL, Crysler CS, Chaikin MA, Donatelli RR, Chen Y, Cheng D, Zhou Z, Yurkow E, Manthey CL, Player MR (2009) Pyrido[2,3-\(d\)]pyrimidin-5-ones: a novel class of antiinflammatory macrophage colony-stimulating factor-1 receptor inhibitors. J Med Chem 52:1081–1099. doi:10.1021/jm801406h

    Article  CAS  PubMed  Google Scholar 

  15. Hayallah AM, Abdel-Hamid MK (2014) Design and synthesis of new pyrido[2,3-\(d\)]pyrimidine-1,4-dione derivatives as anti-inflammatory agents. Der Pharma Chem 6:45–57

    Google Scholar 

  16. Hasan MF, Madkour AM, Saleem I, Rahman JMA, Mohammed EAZ (1994) Reactions of 5-(\(p\)-Anisyl)-2-methyl-7-(\(p\)-tolyl)-4\(H\)-pyrido[2,3-\(d\)][1,3]oxazin-4-one. Heterocycles 38:57–69. doi:10.3987/COM-91-5873

    Article  Google Scholar 

  17. Gangjee A, Vasudevan A, Queener SF, Kisliuk RL (1996) 2,4-diamino-5-deaza-6-substituted pyrido[2,3-\(d\)]pyrimidine antifolates as potent and selective nonclassical inhibitors of dihydrofolate reductases. J Med Chem 39:1438–1446. doi:10.1021/jm950786p

    Article  CAS  PubMed  Google Scholar 

  18. Kots AY, Choi BK, Estrella-Jimenez ME, Warren CA, Gilbertson SR, Guerrant RL, Murad F (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. P Natl Acad Sci USA 105:8440–8845. doi:10.1073/pnas.0712168105

    Article  CAS  Google Scholar 

  19. VanderWel SN, Harvey PJ, McNamara DJ, Repine JT, Keller PR, Quin J, Booth RJ, Elliott WL, Dobrusin EM, Fry DW, Toogood PL (2005) Pyrido[2,3-\(d\)]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4. J Med Chem 48:2371–2387. doi:10.1021/jm049355

    Article  CAS  PubMed  Google Scholar 

  20. Dorsey JF, Jove R, Kraker AJ, Wu J (2000) The pyrido[2,3-\(d\)]pyrimidine derivative PD180970 Inhibits p210\(^{Bcr-Abl}\) tyrosine kinase and induces apoptosis of K562 Leukemic Cells. Cancer Res 60:3127–3131

    CAS  PubMed  Google Scholar 

  21. Dea K, Bhaumikb A, Banerjeeb B, Mukhopadhyaya C (2015) An expeditious and efficient synthesis of spiro-pyrazolo[3,4-\(b\)]pyridines catalysed by recyclable mesoporous aluminosilicate nanoparticles in aqueous-ethanol. Tetrahedron Lett 56:1614–1618. doi:10.1016/j.tetlet.2015.01.163

    Article  Google Scholar 

  22. Quiroga J, Trilleras J, Pantoja D, Abonía R, Insuasty B, Nogueras M, Cobo J (2010) Microwave-assisted synthesis of pyrazolo[3,4-\(b\)]pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic \(\beta \)-diketones. Tetrahedron Lett 51:4717–4719. doi:10.1016/j.tetlet.2010.07.009

    Article  CAS  Google Scholar 

  23. Tsolaki M, Kokarida K, Iakovidou V, Stilopoulos E, Meimaris J, Kazis A (2001) Extrapyramidal symptoms and signs in Alzheimer’s disease: pravalence and correlation with the first symptom. Am J Alzheimers Dis Other Demen 16:268–278. doi:10.1177/153331750101600512

    Article  CAS  PubMed  Google Scholar 

  24. Wimo A, Jönsson L, Gustavsson A, McDaid D, Ersek K, Georges J, Gulacsi L, Karpati K, Kenigsberg P, Valtonen H (2011) The economic impact of dementia in Europe in 2008-cost estimates from the Eurocode project. Int J Geriatr Ps 26:825–832. doi:10.1002/gps.2610

    Article  CAS  Google Scholar 

  25. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosur Ps 66:137–147. doi:10.1136/jnnp.66.2.137

    Article  CAS  Google Scholar 

  26. Silva D, Chioua M, Samadi A, Carreiras MC, Jimeno ML, Mendes E, De los Ríos D, Romero A, Villarroya M, López MG, Marco-Contelles J (2011) Synthesis and pharmacological assessment of diversely substituted pyrazolo[3,4-\(b\)]quinoline, and benzo[\(b\)]pyrazolo[4,3-\(g\)][1,8]naphthyridine derivatives. Eur J Med Chem 46:4676–4681. doi:10.1016/j.ejmech.2011.05.068

    Article  CAS  PubMed  Google Scholar 

  27. Hameed A, Zehra ST, Shah SJA, Khan KM, Alharthy RD, Furtmann N, Bajorath J, Tahir MN, Iqbal J (2015) Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-\(b\)]pyrazine derivatives. Chem Biol Drug Des 86:1115–1120. doi:10.1111/cbdd.12579

    Article  CAS  PubMed  Google Scholar 

  28. Eliezer J, Barreiro EJ, Camara CA, Verli H, Brazil-Mas L, Castro NG, Cintra WM, Aracava Y, Rodrigues CR, Fraga CAM (2003) Design, synthesis, and pharmacological profile of novel fused pyrazolo[4,3-\(d\)]pyridine and pyrazolo[3,4-\(b\)][1,8]naphthyridine isosteres: a new class of potent and selective acetylcholinesterase inhibitors. J Med Chem 46:1144–1152. doi:10.1021/jm020391n

    Article  Google Scholar 

  29. Romdhane A, Said AB, Cherif M, Jannet HB (2016) Design, synthesis and anti-cholinesterase evaluation of some new pyrazolo[4,3-\(e\)] -triazolo[1,5-\(c\)]pyrimidine derivatives. Med Chem Res 25:1358–1368. doi:10.1007/s00044-016-1576-0

    Article  CAS  Google Scholar 

  30. Quiroga J, Alvarado M, Insuasty B, Moreno R (1999) Synthesis of 5-cyanopyrazolo[3,4-\(b\)]pyridines in the reaction of 5-amino-3-methyl-1-phenylpyrazole with arylidene derivatives of malonodinitrile and ethyl cyanoacetate. J Heterocycl Chem 36:1311–1316. doi:10.1002/jhet.5570360533

    Article  CAS  Google Scholar 

  31. Quiroga J, Alvarado M, Insuasty B, Nogueras M, Sanchez A, Cobo J (1998) Synthesis of 6-cyanopyrido[2,3-\(d\)]pyrimidinones in the reaction of 6-amino-4-pyrimidinones with arylidene derivatives of malonodinitrile. J Heterocycl Chem 35:1309–1311. doi:10.1002/jhet.5570350612

    Article  CAS  Google Scholar 

  32. Meerpoel L, Gestel J, Van Gerven F, Woestenborghs F, Marichal P, Sipido V, Terence V, Nash R, Corensa D, Richards R (2005) Pyrrolo[1,2-\(a\)][1,4]benzodiazepine: a novel class of non-azole anti-dermatophyte anti-fungal agents. Bioorg Med Chem 15:3453–3458. doi:10.1016/j.bmcl.2005.05.007

    Article  CAS  Google Scholar 

  33. Acosta P, Insuasty B, Abonia R, Quiroga J (2015) Anellation of pyrrolo[1,2-\(a\)]pyrimidine and pyrido[1,2-\(a\)]pyrimidine systems to a pyrazolopyridine framework by a cascade of two cyclization reactions. Tetrahedron Lett 56:2917–2921. doi:10.1016/j.tetlet.2015.04.068

    Article  CAS  Google Scholar 

  34. Barreiro EJ, Camara CA, Verli H, Brazil-Mas L, Castro NG, Cintra WM, Aracava Y, Rodrigues CR, Fraga CA (2003) Design, synthesis and pharmacological profile of novel fused pyrazolo[4,3-d]pyridine and pyrazolo[3,4-\(b\)][1,8]naphthyridine isoteres: a new class of potent and selective acetylcholinesterase inhibitors. J Med Chem 46:1144–1152. doi:10.1021/jm020391n

    Article  CAS  PubMed  Google Scholar 

  35. Gutiérrez M, Matus MF, Poblete T, Amigo J, Vallejos G, Astudillo L (2013) Isoxazoles: synthesis, evaluation and bioinformatic design as acetylcholinesterase inhibitors. J Pharm Pharmacol 65:1796–1804. doi:10.1111/jphp.12180

    Article  PubMed  Google Scholar 

  36. Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. doi:10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the COLCIENCIAS and Universidad del Valle for financial support and to FONDECYT project number 1150712, PIEI QUIMBIO, project, Utalca, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo Quiroga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 3563 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, P., Insuasty, B., Abonia, R. et al. Synthesis of novel 7-aryl and 7-spiropyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine derivatives and their study as AChE inhibitors. Mol Divers 21, 943–955 (2017). https://doi.org/10.1007/s11030-017-9774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9774-3

Keywords

Navigation