In vitro antiproliferative study of novel adamantyl pyridin-4-ones

Abstract

The preparation of several N-aryl-substituted (phenyl, p-methylphenyl, p-methoxyphenyl, p-nitrophenyl, p-aminophenyl, p-hydroxyphenyl) 3-hydroxy-2-methylpyridin-4-ones as well as their adamantyl derivatives is described, and their in vitro antitumor properties were investigated. The compounds were synthesized in good yields using efficient synthetic routes and methods. Prepared derivatives were evaluated in an antiproliferative in vitro study on 4 cancer cell lines, namely HCT 116 (colon carcinoma), H 460 (lung carcinoma), MCF-7 (breast carcinoma) and K562 (chronic myelogenous leukemia). All tested compounds showed antiproliferative activity ranging from moderate to strong on all inspected cell lines with 4 adamantane containing derivatives being active and selective at low micromolar IC\(_{50}\) concentrations on HCT 116, H 460 and MCF-7. LDH cytotoxicity assay revealed that cytotoxic effects occur after 48 h of exposure. It was shown that there was no change in caspase activity in the treated cells, but there were changes in the cell cycle. All treated samples showed reduced number of cells in the S phase with increased G0/G1 (4b, 5a, 5b) and G2/M (4a) phase.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3

References

  1. 1.

    Santos MA, Chaves S (2015) 3-Hydroxypyridinone derivatives as metal sequestering agents for therapeutic use. Future Med Chem 7:383–410. doi:10.4155/fmc.14.162

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Fassihi A, Abedi D, Saghaie L, Sabet R, Fazeli H, Bostaki G, Deilami O, Sadinpour H (2009) Synthesis, antimicrobial evaluation and QSAR study of some 3-hydroxypyridine-4-one and 3-hydroxypyran-4-one derivatives. Eur J Med Chem 44:2145–2157. doi:10.1016/j.ejmech.2008.10.022

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Merlot AM, Kalinowski DS, Richardson DR (2013) Novel chelators for cancer treatment: where are we now? Antioxid Redox Sign 18:973–1006. doi:10.1089/ars.2012.4540

    CAS  Article  Google Scholar 

  4. 4.

    Saghaie L, Hider RC (2008) Synthesis and physico-chemical properties of a series of bidentate 3-hydroxypyridin-4-ones iron chelating agents. Res Pharm Sci 3:21–30

    CAS  Google Scholar 

  5. 5.

    Saghaie L, Mirmohammad Sadeghi M, Nikazama A (2006) Synthesis, analysis and determination of partition coefficients of N-arylhydroxypyridinone derivatives as iron chelators. Res Pharm Sci 1:40–48

    Google Scholar 

  6. 6.

    Ma Y, Zhou T, Kong X, Hider RC (2012) Chelating agents for the treatment of systemic iron overload. Curr Med Chem 19:2816–2827. doi:10.2174/092986712800609724

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Santos MA, Gil M, Gano L, Chaves S (2005) Bifunctional 3-hydroxy-4-pyridinone derivatives as potential pharmaceuticals: synthesis, complexation with Fe(III), Al(III) and Ga(III) and in vivo evaluation with \(^{67}\)Ga. J Biol Inorg Chem 10:564–580. doi:10.1007/s00775-005-0003-7

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kalinowski DS, Richardson DR (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharm Rev 57:547–583. doi:10.1124/pr.57.4.2

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zhou T, Ma Y, Kong X, Hider RC (2012) Design of iron chelators with therapeutic application. Dalton Trans 41:6371–6389. doi:10.1039/C2DT12159J

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kovacevic Z, Kalinowski DS, Lovejoy DB, Yu Y, Rahmanto YS, Sharpe PC, Bernhardt PV, Richardson DR (2011) The medicinal chemistry of novel iron chelators for the treatment of cancer. Curr Top Med Chem 11:483–499. doi:10.2174/156802611794785190

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB (2009) Cancer ell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta 1790:702–717. doi:10.1016/j.bbagen.2008.04.003

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Richardson DR (2002) Iron chelators as therapeutic agents for the treatment of cancer. Crit Rev Oncol Hematol 42:267–281. doi:10.1016/S1040-8428(01)00218-9

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Becton DL, Bryles P (1988) Deferoxamine inhibition of human neuroblastoma viability and proliferation. Cancer Res 48:7189–7192

    CAS  PubMed  Google Scholar 

  14. 14.

    Bierer BE, Nathan DG (1990) The effect of desferrithiocin, an oral iron chelator, on T-cell function. Blood 76:2502–2509

    Google Scholar 

  15. 15.

    Blatt J, Stitely S (1987) Antineuroblastoma activity of desferoxamine in human cell lines. Cancer Res 47:1749–1750

    CAS  PubMed  Google Scholar 

  16. 16.

    Kaplinsky C, Estrov Z, Freedman MH, Gelfand EW, Cohen A (1987) Effect of deferoxamine on DNA synthesis, DNA repair, cell proliferation, and differentiation of HL-60 cells. Leukemia 1:437–441

    CAS  PubMed  Google Scholar 

  17. 17.

    Richardson DR, Tran EH, Ponka P (1995) The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood 86:4295–4306

    CAS  PubMed  Google Scholar 

  18. 18.

    Donfrancesco A, Deb G, Angioni A, Maurizzio C, Cozza R, Jenkner A, Landolfo A, Boglino C, Helson L (1993) D-CECaT: a breakthrough for patients with neuroblastoma. Anti-Cancer Drugs 4:317–321

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Barman Balfour JA, Foster RH (1999) Deferiprone: a review of its clinical potential in iron overload in beta-thalassaemia major and other transfusion-dependent diseases. Drugs 58:553–578

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Sheppard LN, Kontoghiorghes GJ (1993) Competition between deferiprone, desferrioxamine and other chelators for iron and the effect of other metals. Arzneimittelforschung 43:659–663

    CAS  PubMed  Google Scholar 

  21. 21.

    Dehkordi LS, Liu ZD, Hider RC (2008) Basic 3-hydroxypyridin-4-ones: potential antimalarial agents. Eur J Med Chem 43:1035–1047. doi:10.1016/j.ejmech.2007.07.011

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Rai BL, Liu ZD, Liu DY, Lu SL, Hider RC (1999) Synthesis, physicochemical properties and biological evaluation of ester prodrugs of 3-hydroxypyridin-4-ones: design of orally active chelators with clinical potential. Eur J Med Chem 34:475–485. doi:10.1016/S0223-5234(99)80097-X

    CAS  Article  Google Scholar 

  23. 23.

    Schlindwein W, Waltham E, Burgess J, Binsted N, Nunes A, Leite A, Rangel M (2006) New lipophilic 3-hydroxy-4-pyridinonate iron(III) complexes: synthesis and EXAFS structural characterisation. Dalton Trans 1313–1321: doi:10.1039/b509671e

  24. 24.

    Liu J, Obando D, Liao V, Lifa T, Codd R (2011) The many faces of the adamantyl group in drug design. Eur J Med Chem 46:1949–1963. doi:10.1016/j.ejmech.2011.01.047

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Spasov AA, Khamidova TV, Bugaeva LI, Morozov IS (2000) Molecular-biological problems of drug design and mechanism of drug action. Adamantane derivatives: pharmacological and toxicological properties. Pharm Chem J 34:1–7. doi:10.1007/BF02524549

    CAS  Article  Google Scholar 

  26. 26.

    Maugh TH (1976) Amantadine: an alternative for prevention of influenza. Science 192:130–131. doi:10.1126/science.192.4235.130

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Liddell JR, Obando D, Liu J, Ganio G, Volitakis I, Mok SS, Crouch PJ, White AR, Codd R (2013) Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease. Free Radic Biol Med 60:147–156. doi:10.1016/j.freeradbiomed.2013.01.027

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Wanka L, Iqbal K, Schreiner PR (2013) The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 113:3516–3604. doi:10.1021/cr100264t

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory—design and description. J. Comput-Aided Mol Des 19:453–463. doi:10.1007/s10822-005-8694-y

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Lam K, Timmerman H (2012) Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov Today Technol 9:e97–e104. doi:10.1016/j.ddtec.2012.03.002

    Article  Google Scholar 

  31. 31.

    Ribić R, Habjanec L, Vranešić B, Frkanec R, Tomić S (2012) Synthesis and immunostimulating properties of novel adamant-1-yl tripeptides. Chem Biodivers 9:777–788. doi:10.1002/cbdv.201100232

    Article  PubMed  Google Scholar 

  32. 32.

    Ribić R, Habjanec L, Frkanec R, Vranešić B, Tomić S (2012) Influence of mannosylation on immunostimulating activity of adamant-1-yl tripeptide. Chem Biodivers 9:1373–1381. doi:10.1002/cbdv.201200008

  33. 33.

    Štimac A, Šegota S, Dutour Sikirić M, Ribić R, Frkanec L, Svetličić V, Tomić S, Vranešić B, Frkanec R (2012) Surface modified liposomes by mannosylated conjugates anchored via the adamantyl moiety in the lipid bilayer. Biochim Biophys Acta Biomembr 1818:2252–2259. doi:10.1016/j.bbamem.2012.04.002

    Article  Google Scholar 

  34. 34.

    Ribić R, Habjanec L, Vranešić B, Frkanec R, Tomić S (2011) Synthesis and biological evaluation of new mannose derived immunomodulating adamantyltripeptides. Croat Chem Acta 84:233–244. doi:10.5562/cca1827

    Article  Google Scholar 

  35. 35.

    Ribić R, Kovačević M, Petrović Peroković V, Gruić-Sovulj I, Rapić V, Tomić S (2010) Synthesis and biological activity of mannose conjugates with 1-adamantamine and ferrocene amines. Croat Chem Acta 83:421–431

    Google Scholar 

  36. 36.

    Car Ž, Hrenar T, Petrović Peroković V, Ribić R, Seničar M, Tomić S (2014) Mannosylated \(N\)-aryl substituted 3-hydroxypyridine-4-ones: synthesis, hemagglutination inhibitory properties and molecular modeling. Chem Biol Drug Des 84:393–401. doi:10.1111/cbdd.12329

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Petrović Peroković V, Prugovečki B, Car Ž (2013) Synthesis, crystal and molecular structure of novel adamantyl derivatives of \(n\)-aryl substituted 3-hydroxy-2-methylpyridine-4-ones. Croat Chem Acta 86:317–323. doi:10.5562/cca2339

    Article  Google Scholar 

  38. 38.

    Gojmerac Ivšić A, Tomišić V, Car Ž, Prugovečki B, Tomić S (2011) Synthesis and characterization of a new 4-pyridone derivative and its complexation of iron(III). J Mol Struct 990:237–243. doi:10.1016/j.molstruc.2011.01.051

  39. 39.

    Petrović Peroković V, Gojmerac Ivšić A, Car Ž, Tomić S (2014) Synthesis of 3-hydroxy-1-(\(p\)-methoxyphenyl)-2-methylpyridine-4-one and spectrophotometric extraction studies on its complexation of vanadium(V). Croat Chem Acta 87:103–109. doi:10.5562/cca2366

  40. 40.

    Jakopčić K, Tamhina B, Zorko F, Herak MJ (1977) Synthesis and physical properties of some new 4-pyridone extractants. J Inorg Nucl Chem 39:1201–1203. doi:10.1016/0022-1902(77)80345-X

    Article  Google Scholar 

  41. 41.

    Zhang Z, Rettig SJ, Orvig C (1992) Physical and structural studies of \(N\)-carboxymethyl- and \(N\)-(\(p\)-methoxyphenyl)-3-hydroxy-2-methyl-4-pyridinone. Can J Chem 70:763–770

    CAS  Article  Google Scholar 

  42. 42.

    Färber M, Osiander H, Severin T (1994) Synthesis of N-substituted 3-hydroxy-2-methyl-4-pyridones and -pyridonimines. J Heterocycl Chem 31:947–956. doi:10.1002/jhet.5570310443

    Article  Google Scholar 

  43. 43.

    Harris RLN (1976) Potential wool growth inhibitors. Aust J Chem 29:1329–1334. doi:10.1071/CH9761329

    CAS  Article  Google Scholar 

  44. 44.

    Neises B, Steglich W (1978) Simple method for the esterification of carboxylic acids. Angew Chem Int Ed Engl 17:522–524. doi:10.1002/anie.197805221

    Article  Google Scholar 

  45. 45.

    Gaboriau F, Chantrel-Groussard K, Rakba N, Loyer P, Pasdeloup N, Hider RC, Brissot P, Lescoat G (2004) Iron mobilization, cytoprotection, and inhibition of cell proliferation in normal and transformed rat hepatocyte cultures by the hydroxypyridinone CP411, compared to CP20: a biological and physicochemical study. Biochem Pharmacol 67:1479–1487. doi:10.1016/j.bcp.2003.12.019

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Sadeghi-aliabadi H, Saghaie L, Tadayonnia N, Mirian M (2013) Hydroxypyridinone derivatives: synthesis and cytotoxic evaluation. J Rep Pharm Sci 2:5–15

    Google Scholar 

  47. 47.

    Saghaie L, Sadeghi-aliabadi H, Kafiri M (2011) Synthesis and biological evaluation of bidentate 3-hydroxypyridin-4-ones iron chelating agents. Res Pharm Sci 6:117–122

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Virtual Computational Chemistry Laboratory. http://www.vcclab.org/lab/alogps/. Accessed 20 Feb 2017

  49. 49.

    Zhang Z, Rettig SJ, Orvig C (1991) Lipophilic coordination compounds: aluminum, gallium, and indium complexes of 1-aryl-3-hydroxy-2-methyl-4-pyridinones. Inorg Chem 30:509–515

    CAS  Article  Google Scholar 

  50. 50.

    Green DE, Ferreira CL, Stick RV, Patrick BO, Adam MJ, Orvig C (2005) Carbohydrate-bearing 3-hydroxy-4-pyridinonato complexes of gallium(III) and indium(III). Bioconjugate Chem 16:1597–1609. doi:10.1021/bc0501808

    CAS  Article  Google Scholar 

  51. 51.

    Mickisch G, Fajta S, Keilhauer G, Schlick E, Tschada R, Alken P (1990) Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). Urol Res 18:131–136

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Supek F, Šumanovac Ramljak T, Marjanović M, Buljubašić M, Kragol G, Ilić N, Šmuc T, Zahradka D, Mlinarić-Majerski K, Kralj M (2011) Could log P be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns. Eur J Med Chem 46:3444–3544. doi:10.1016/j.ejmech.2011.05.009

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Mazumder S, Plesca D, Almasan A (2008) In: Mor G, Alvero AB (eds) Apoptosis and cancer: methods and protocols. Humana Press, Totowa, pp 13–21

    Google Scholar 

  54. 54.

    Cook JA, Mitchell JB (1989) Viability measurements in mammalian cell systems. Anal Biochem 179:1–7. doi:10.1016/0003-2697(89)90191-7

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Croatian Science Foundation for support of this work (Projects IP-2014-09-7899, IP-2013-11-5660).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Petrović Peroković.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 3720 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrović Peroković, V., Car, Ž., Opačak-Bernardi, T. et al. In vitro antiproliferative study of novel adamantyl pyridin-4-ones. Mol Divers 21, 881–891 (2017). https://doi.org/10.1007/s11030-017-9763-6

Download citation

Keywords

  • N-aryl 3-hydroxy-2-methylpyridin-4-ones
  • Adamantyl
  • Lipophilicity
  • Antiproliferation
  • Cancer