Skip to main content
Log in

Palladium-catalyzed acid-free Fujiwara–Moritani alkenylation of 4-thiazolidinones

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Herein, we report a facile method for the alkenylation of a 4-thiazolidinone motif without using external acid and high-pressure gas, which are required in conventional Fujiwara–Moritani reactions. Mild reaction conditions, one-pot synthesis, and utilization of an oxidant made this process more feasible in comparison with previously reported methods. Functionalization of the slightly more acidic \({ sp}^{3}\) C–H bond with the less acidic \( sp ^{2}\) C–H bond yielded the alkenylated motif. This pathway opens new possibilities for organic synthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

References

  1. Mudaliar SS, Shaikh MUM, Chikhalia KH (2017) An efficient synthetic strategy for \(sp^3\)(C)-N amination on 4-thiazolidinone with primary heteroaryl amines. Chem Slct 2:1689–1693. doi:10.1002/slct.201601950

    CAS  Google Scholar 

  2. Messaoudi S, Brion JD, Alami M (2010) Transition-metal-catalyzed direct C–H alkenylation, alkynylation, benzylation, and alkylation of (hetero) arenes. Eur J Org Chem 34:6495–6516. doi:10.1002/ejoc.201000928

    Article  Google Scholar 

  3. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem Rev 2:1147–1169. doi:10.1021/cr900184e

    Article  Google Scholar 

  4. Daugulis O, Do HQ, Shabashov D (2009) Palladium-and copper-catalyzed arylation of carbon–hydrogen bonds. Acc Chem Res 8:1074–1086. doi:10.1021/ar9000058

    Article  Google Scholar 

  5. Ackermann L, Vicente R, Kapdi AR (2009) Transition-metal-catalyzed direct arylation of (hetero) arenes by C–H bond cleavage. Angew Chem Int 52:9792–9826. doi:10.1002/anie.200902996

    Article  Google Scholar 

  6. Lewis JC, Bergman RG, Ellman JA (2008) Direct functionalization of nitrogen heterocycles via Rh-catalyzed C–H bond activation. Acc Chem Res 8:1013–1025. doi:10.1021/ar800042p

    Article  Google Scholar 

  7. Yu YY, Niphakis MJ, Georg GI (2011) Palladium (II)-catalyzed dehydrogenative alkenylation of cyclic enaminones via the Fujiwara–Moritani reaction. Org Lett 21:5932–5935. doi:10.1021/ol202677g

    Article  Google Scholar 

  8. Scheuermann CJ (2010) Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Chem Asian J 3:436–451. doi:10.1002/asia.200900487

    Article  Google Scholar 

  9. Li BJ, Shi ZJ (2012) From C (\(sp^2\))-H to C (\(sp^3\))-H: systematic studies on transition metal-catalyzed oxidative C–C formation. Chem Soc Rev 17:5588–5598. doi:10.1039/C2CS35096C

    Article  Google Scholar 

  10. Chen X, Goodhue CE, Yu JQ (2006) Palladium-catalyzed alkylation of \(sp^2\) and \(sp^3\) CH bonds with methylboroxine and alkylboronic acids: two distinct CH activation pathways. J Am Chem Soc 39:12634–12635. doi:10.1021/ja0646747

    Article  Google Scholar 

  11. Sakakibara K, Yamashita M, Nozaki K (2005) An efficient Pd (II)-based catalyst system for carboxylation of aromatic C–H bond by addition of a phosphenium salt. Tetrahedron Lett 6:959–962. doi:10.1016/j.tetlet.2004.12.027

    Article  Google Scholar 

  12. Desai LV, Hull KL, Sanford MS (2004) Palladium-catalyzed oxygenation of unactivated \(sp^3\) C–H bonds. J Am Chem Soc 31:9542–9543. doi:10.1021/ja046831c

    Article  Google Scholar 

  13. Stahl SS (2004) Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int 26:3400–3420. doi:10.1002/anie.200300630

    Article  Google Scholar 

  14. Muzart J (2003) Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron 31:5789–5816. doi:10.1016/S0040-4020(03)00866-4

    Article  Google Scholar 

  15. Wang JR, Yang CT, Liu L, Guo QX (2007) Pd-catalyzed aerobic oxidative coupling of anilides with olefins through regioselective C–H bond activation. Tetrahedron Lett 31:5449–5453. doi:10.1016/j.tetlet.2007.06.001

    Article  Google Scholar 

  16. Zaitsev VG, Daugulis O (2005) Catalytic coupling of haloolefins with anilides. J Am Chem Soc 12:4156–4157. doi:10.1021/ja050366h

  17. Moritanl I, Fujiwara Y (1967) Aromatic substitution of styrene–palladium chloride complex. Tetrahedron Lett 12:1119–1122. doi:10.1016/S0040-4039(00)90648-8

    Article  Google Scholar 

  18. Fujiwara Y, Moritani I, Matsuda M, Teranishi S (1968) Aromatic substitution of olefin. (IV) Reaction with palladium metal and silver acetate. Tetrahedron Lett 35:3863–3865. doi:10.1016/S0040-4039(01)99121-X

    Article  Google Scholar 

  19. Liu X, Hii KK (2011) Alternative to benzoquinone for room-temperature Fujiwara–Moritani reactions. J Org Chem 19:8022–8026. doi:10.1021/jo201164m

    Article  Google Scholar 

  20. Shaikh MUM, Mudaliar SS, Chikhalia KH (2016) An efficient alkynylation of 4-thiazolidinone with terminal alkyne under C–H functionalisation. RSC Adv 56:50780–50785. doi:10.1039/C6RA05015H

    Article  Google Scholar 

  21. Miura M, Tsuda T, Satoh T, Pivsa-Art S, Nomura M (1998) Oxidative cross-coupling of \(n-(2^{\prime }\)-phenylphenyl) benzene-sulfonamides or benzoic and naphthoic acids with alkenes using a palladium–copper catalyst system under air. J Org Chem 15:5211–5215. doi:10.1021/jo980584b

    Article  Google Scholar 

  22. Boele MDK, Van Strijdonck GPF, De Vries AHM, Kamer PCJ, De Vries JG, van Leeuwen Piet W N M (2002) Selective Pd-catalyzed oxidative coupling of anilides with olefins through C–H bond activation at room temperature. J Am Chem Soc 124:1586–1587. doi:10.1021/ja0176907

    Article  CAS  PubMed  Google Scholar 

  23. Shah DR, Lakum HP, Chikhalia KH (2015) Synthesis and in vitro antimicrobial evaluation of piperazine substituted quinazoline-based thiourea/thiazolidinone/chalcone hybrids. Russ J Bioorg Chem 41:209–222. doi:10.1134/S1068162015020132

    Article  CAS  Google Scholar 

  24. Omar K, Geronikaki A, Zoumpoulakis P, Camoutsis C, Sokovic M, Ciric A, Glamoclija J (2010) Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg Med Chem 1:426–432. doi:10.1016/j.bmc.2009.10.041

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Gujarat University for laboratory facilities and Gujcost Gandhinagar, Gujarat, India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor H. Chikhalia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 5122 KB)

Appendices

Appendix: Instrumental

Palladium(II) acetate, alkenes, and all other chemicals and solvents were purchased from Sigma-Aldrich and Merck and were directly used without further purification. All compounds were characterized by \(^{1}\)H NMR, \(^{13}\)C NMR and elemental analysis. Melting points were determined in open capillaries on a Veego electronic apparatus VMP-D (Veego Instrument Corporation, Mumbai, India) and are uncorrected. \(^{1}\)HNMR and \(^{13}\)C NMR spectra were recorded on a 400 MHz FT NMR, Avance III Bruker model spectrometer using \(\hbox {DMSO-d}_{6}\) as a solvent and TMS (\(\hbox {Me}_{4}\hbox {Si}\)) as internal standard. NMR chemical shifts are reported as parts per million (ppm) downfield from TMS. The splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; m, multiplet. Elemental analyses (C, H, N) were performed using a Heraeus CarloErba 1180 CHN analyzer (Hanau, Germany).

General procedure

Preparation of Schiff base substrates

Reaction of INH (isonicotinic acid hydrazide) or nicotinic acid hydrazide (0.01 mol) with different aryl aldehydes (0.01 mol) and trace amount of acetic acid was carried out at reflux temperature using ethanol as solvent with constant stirring using a magnetic stirring bar. The reaction was continuously monitored using TLC. After completion of the reaction, the reaction mixture was poured into water and a white precipitate (Schiff base) was filtered, dried, and recrystallized from ethanol to get the title compound. Yield of the reaction is 80–85%.

General procedure for the preparation of 4-thiazolidinone

An oven-dried flat-bottomed flask previously equipped with a magnetic stir bar was charged with a Schiff base (0.01 mol) and thioglycolic acid (0.01 mol) dissolved in toluene (10 mL), and the mixture was heated to reflux with continuous stirring for 12 h. Water was removed using a Dean–Stark apparatus, and the progress of the reaction was monitored by TLC using ethyl acetate:hexane (6:4) as eluent. After completion of the reaction, the reaction mixture was poured into cold water and treated with 10% \(\hbox {NaHCO}_{3}\) to neutralize the mixture. A white solid was obtained, filtered, dried, and recrystallized from ethanol to get the title compound.

General procedure of the dehydrogenative alkenylation reaction

To an oven-dried flat-bottomed flask equipped with a condenser and magnetic bar, under air it was charged with N-(4-oxo-2-phenylthiazolidin-3-yl)isonicotinamide (1a) (300 mg, 1.0 mmol), \(\hbox {Pd}(\hbox {OAc})_{2}\) (22 mg, 0.1 mmol), and \(\hbox {Cu}(\hbox {OAc})_{2}\) (145 mg, 0.80 mmol). Then, styrene (2a) (0.22 mL, 2.0 mmol) was added followed by 1,4-dioxane (5 mL). The reaction vessel was purged with \(\hbox {N}_{2}\) and then sealed. After being stirred for 5 min, the reaction was heated at 80 \({^{\circ }}\hbox {C}\) for 3 h. The reaction was diluted with EtOAc (10 mL), neutralized with excess \(\hbox {K}_{2}\hbox {CO}_{3}\) (1 g), and stirred for another 5 min, during which time a small amount of gas was released. The mixture was filtered over celite, and the filter cake was washed with EtOAc (50 mL). The filtrate was then concentrated under reduced pressure and the resulting residue purified by column chromatography (1:1 EtOAc/hexane) on silica gel to provide 256 mg (64%) of (3a) as a light white solid.

Characterization data

N-(4-oxo-2-phenyl-5-styrylthiazolidin-3-yl)isonicotinamide (3a): Yield 192 mg, 64% as a white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \) ppm: 9.58 (s, 1H), 8.87 (d, J \(=\) 7.1 Hz, 2H), 7.59 (d, J \(=\) 7.1 Hz, 2H), 7.32–7.17 (m, 10H), 6.61 (s, 1H), 6.56 (d, J \(=\) 15.6 Hz, 1H), 5.72 (dd, J \(=\) 16.0 Hz, 4.3 Hz 1H), 4.16 (d, J \(=\) 6.1 Hz 1H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)174.56, 160.65, 151.38, 139.96, 139.20, 136.11, 130.03, 129.12, 128.93, 128.76, 127.74, 127.56, 127.00, 126.70, 123.48, 67.59, 59.27. Anal. Calcd. For \(\hbox {C}_{23}\hbox {H}_{17}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 69.15; H: 4.34; N: 10.53. Found: C: 69.13; H: 4.31; N: 10.51. mp 206–208 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 401.15.

N-(5-(2-methylstyryl)-4-oxo-2-phenylthiazolidin-3-yl)isonicotinamide (3b): Yield 57 mg, 19% as a white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\updelta \) ppm: 9.60 (s, 1H), 8.91 (d, J \(=\) 7.2 Hz, 2H), 7.83 (d, J \(=\) 7.2 Hz, 2H), 7.31–7.12 (m, 9H), 6.71 (d, J \(=\) 15.6 Hz, 1H), 5.83 (dd, J \(=\) 16.0 Hz, 4.8 Hz 1H), 5.79 (s, 1H), 4.16 (d, J \(=\) 5.9 Hz, 1H), 2.37 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)174.68, 160.87, 151.86, 139.88, 139.61, 139.25, 135.45, 131.86, 129.98, 128.94, 128.93, 127.92, 127.83, 127.76, 127.74, 125.43, 123.52, 68.67, 59.27, 20.23. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 69.38; H: 5.11; N: 10.10. Found: C: 69.35; H: 5.08; N: 10.13. mp 201–203 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 415.17.

N-(5-(3-methylstyryl)-4-oxo-2-phenylthiazolidin-3-yl)isonicotinamide (3c): Yield 66 mg, 22% as a white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \updelta \) ppm: 9.58 (s, 1H), 8.88 (d, J \(=\) 7.2 Hz, 2H), 7.31 (d, J \(=\) 7.2 Hz, 2H), 7.31–7.04 (m, 9H), 6.64 (d, J \(=\) 15.6 Hz, 1H), 5.72 (dd, J \(=\) 16.1 Hz, 5.4 Hz 1H), 5.67 (s, 1H), 4.16 (d, J \(=\) 6.0 Hz, 1H), 2.34 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)174.68, 160.87, 151.86, 139.88, 139.61, 139.28, 137.59, 130.87, 129.89, 129.72, 128.94, 128.24, 127.76, 126.74, 126.52, 125.65, 68.67, 59.27, 21.39. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 69.32; H: 5.13; N: 10.09. Found: C: 69.35; H: 5.11; N: 10.12. mp 214–217 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 415.39.

N-(5-(4-methylstyryl)-4-oxo-2-phenylthiazolidin-3-yl)isonicotinamide (3d): Yield 87 mg, 29% as a white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\,\updelta \) ppm: 9.53 (s, 1H), 8.96 (d, J \(=\) 7.3 Hz, 2H), 7.80 (d, J \(=\) 7.3 Hz, 2H), 7.35–7.12 (m, 9H), 6.62 (d, J \(=\) 15.6 Hz, 1H), 6.24 (s, 1H), 5.71 (dd, J \(=\) 16.0 Hz, 4.3 Hz 1H), 4.16 (d, J \(=\) 5.9 Hz, 1H), 2.35 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)174.68, 160.87, 151.86, 139.88, 139.28, 138.90, 135.74, 129.70, 129.18, 128.94, 127.76, 127.67, 126.74, 126.10, 123.52, 68.67, 59.27, 21.31. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 69.34; H: 5.11; N: 10.11. Found: C: 69.36; H: 5.08; N: 10.13. mp 232–234 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 415.64.

N-(5-(4-methoxystyryl)-4-oxo-2-phenylthiazolidin-3-yl)isonicotinamide (3e): Yield 120 mg, 40% as a white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \updelta \) ppm: 9.62 (s, 1H), 8.91 (d, J \(=\) 7.1 Hz, 2H), 7.79 (d, J \(=\) 7.1 Hz, 2H), 7.29–6.85 (m, 10H), 6.58 (d, J \(=\) 15.5 Hz, 1H), 5.61 (dd, J \(=\) 16.0 Hz, 4.1 Hz 1H), 4.16 (d, J \(=\) 5.8 Hz, 1H), 3.81 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)174.68, 160.87, 159.91, 151.86, 139.88, 139.28, 128.78, 126.74, 123.61, 114.61, 68.67, 58.27, 56.01. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{3}\hbox {S}\): C: 66.79; H: 4.92; N: 9.74. Found: C: 66.82; H: 4.90; N: 9.75. mp 198–204 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 431.13.

N-(5-(2-methoxystyryl)-4-oxo-2-phenylthiazolidin-3-yl)isonicotinamide (3f): Yield 195 mg, 65% as a white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \) ppm: 9.54 (s, 1H), 8.93 (d, J \(=\) 7.2 Hz, 2H), 7.78 (d, J \(=\) 7.2 Hz, 2H), 7.41–6.93 (m, 9H), 6.69 (d, J \(=\) 15.6 Hz, 1H), 5.80–5.79 (m, 2H), 4.16 (d, J \(=\) 6.0 Hz, 1H), 3.79 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)174.68, 160.87, 156.72, 151.86, 139.88, 139.28, 128.94, 126.74, 123.52, 121.06, 68.67, 58.27, 56.79. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{3}\)S: C: 66.86; H: 4.91; N: 9.77 Found: C: 66.89; H: 4.93; N: 9.74. mp 219–222 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 431.05.

N-(5-(2-(tert-butylperoxy)vinyl)-4-oxo-2-phenylthiazolidin-3-yl)isonicotinamide (3g): Yield 252 mg, 84% as a brown solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \) ppm: 9.63 (s, 1H), 8.90 (d, J \(=\) 7.1 Hz, 2H), 7.74 (d, J \(=\) 7.1 Hz, 2H), 7.35–7.24 (m, 5H), 6.22 (s, 1H), 6.00 (s, 1H), 4.74 (dd, J \(=\) 16.1 Hz, 5.1 Hz 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H), 1.28 (s, 9H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)175.56, 160.65, 151.38, 146.31, 139.96, 139.20, 128.93, 127.74, 126.70, 123.48, 108.45, 80.18, 67.59, 58.57, 26.66. Anal. Calcd. For \(\hbox {C}_{21}\hbox {H}_{23}\hbox {N}_{3}\hbox {O}_{4}\hbox {S}\): C: 61.00; H: 5.61; N: 10.16. Found: C: 61.02; H: 5.58; N: 10.18. mp 184–187 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 411.98.

N-(4-oxo-2-phenyl-5-(2-(phenylperoxy)vinyl)thiazolidin-3-yl)isonicotinamide (3h): Yield 273 mg, 91% as a light brown solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\updelta \) ppm: 9.63 (s, 1H), 8.88 (d, J \(=\) 7.1 Hz, 2H), 7.60 (d, J \(=\) 7.1 Hz, 2H), 7.32–7.22 (m, 10H), 6.33 (s, 1H), 5.62 (d, J \(=\) 7.3, 1H), 4.97 (dd, J \(=\) 16.1 Hz, 5.2 Hz 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)175.56, 160.65, 151.38, 145.60, 139.96, 139.20, 128.93, 128.63, 128.32, 127.74, 126.70, 123.48, 105.43, 73.31, 67.59, 58.57. Anal. Calcd. For \(\hbox {C}_{23}\hbox {H}_{19}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 63.73; H: 4.42; N: 9.69. Found: C: 63.70; H: 4.44; N: 9.66. mp 194–195 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 445.94.

N-(5-(3-(dimethylamino)-3-oxoprop-1-en-1-yl)-4-oxo-2-phenylthiazolidin-3-yl)isonicotinamide (3i): Yield 279 mg, 93% as a yellow brown solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \updelta \) ppm: 9.62 (s, 1H), 8.82 (d, J \(=\) 7.1 Hz, 2H), 7.61 (d, J \(=\) 7.1 Hz, 2H), 7.28–7.21 (m, 5H), 6.10 (s, 1H), 6.09 (dd, J \(=\) 7.3 Hz, 3.7 Hz 1H), 4.84 (d, J \(=\) 16.1 Hz, 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H), 2.28 (s, 6H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)175.56, 160.65, 151.38, 147.36, 139.96, 139.20, 128.93, 127.74, 126.70, 123.48, 99.99, 67.59, 58.57, 47.55. Anal. Calcd. For \(\hbox {C}_{20}\hbox {H}_{20}\hbox {N}_{4}\hbox {O}_{3}\hbox {S}\): C: 60.59; H: 5.08; N: 14.13. Found: C: 60.57; H: 5.11; N: 14.10. mp 197–199 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 383.12.

N-(2-(3-nitrophenyl)-4-oxo-5-styrylthiazolidin-3-yl)isonicotinamide (3j): Yield 165 mg, 55% as a pale yellow solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\,\updelta \) ppm: 9.61 (s, 1H), 8.83 (d, J \(=\) 7.3 Hz, 2H), 8.15 (d, J \(=\) 7.3 Hz, 1H), 8.13 (s, 1H), 7.79–7.58 (m, 4H), 7.28–7.19 (m, 5H), 6.55 (d, J \(=\) 15.5 Hz, 1H), 6.23 (s, 1H), 5.67 (dd, J \(=\) 16.0 Hz, 3.5 Hz 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\,\updelta \)175.56, 160.65, 151.38, 148.59, 142.52, 139.20, 136.11, 130.98, 130.03, 129.12, 128.76, 128.53, 127.56, 127.00, 123.48, 119.84, 119.72, 67.78, 59.27. Anal. Calcd. For \(\hbox {C}_{23}\hbox {H}_{18}\hbox {N}_{4}\hbox {O}_{4}\hbox {S}\): Found: C: 61.84; H: 4.10; N: 12.55. C: 61.86; H: 4.07; N: 12.58. mp 200–202 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 446.23.

N-(2-(4-nitrophenyl)-4-oxo-5-styrylthiazolidin-3-yl)isonicotinamide (3k): Yield 183 mg, 61% as a pale yellow solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\,\updelta \) ppm: 9.59 (s, 1H), 8.96 (d, J \(=\) 7.3 Hz, 2H), 8.21 (d, J \(=\) 7.3 Hz, 2H), 7.79–7.19 (m, 9H), 6.55 (d, J \(=\) 15.6 Hz, 1H), 6.36 (s, 1H), 5.67 (dd, J \(=\) 16.0 Hz, 4.3 Hz 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)175.56, 160.65, 151.38, 147.85, 147.71, 139.20, 136.11, 130.03, 129.12, 128.76, 127.56, 127.00, 125.88, 123.98, 123.48, 67.59, 59.27. Anal. Calcd. For \(\hbox {C}_{23}\hbox {H}_{18}\hbox {N}_{4}\hbox {O}_{4}\hbox {S}\): C: 61.86; H: 4.08; N: 12.50. Found: C: 61.88; H: 4.05; N: 12.53. mp 235–237 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 446.93.

N-(4-oxo-5-styryl-2-(p-tolyl)thiazolidin-3-yl)isonicotinamide (3l): Yield 129 mg, 42% as a white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\,\updelta \) ppm: 9.60 (s, 1H,), 8.86 (d, J \(=\) 7.2 Hz, 2H), 7.62 (d, J \(=\) 7.2 Hz, 2H), 7.25–7.11 (m, 9H), 6.45 (d, J \(=\) 15.6 Hz, 1H), 6.29 (s, 1H), 5.80 (dd, J \(=\) 16.0 Hz, 4.8 Hz, 1H), 4.16 (d, J \(=\) 6.0 Hz, 1H), 2.29 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6})\,\updelta \)175.56, 160.65, 151.38, 139.20, 138.33, 136.98, 136.13, 130.03, 129.55, 129.12, 128.76, 127.56, 127.00, 125.88, 123.48, 67.59, 59.27, 21.13. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 69.41; H: 5.04; N: 10.11. Found: C: 69.39; H: 5.01; N: 10.13. mp 207–209 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 415.12.

N-(4-oxo-5-styryl-2-(o-tolyl)thiazolidin-3-yl)isonicotinamide (3m): Yield 87 mg, 29% as a white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \) ppm: 9.58 (s, 1H), 8.95 (d, J \(=\) 7.2 Hz, 2H), 7.79 (d, J \(=\) 7.2 Hz, 2H), 7.38–7.18 (m, 9H), 6.64 (d, J \(=\) 15.5 Hz, 1H), 6.52 (s, 1H), 5.71 (dd, J \(=\) 16.0 Hz, 5.1 Hz, 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H), 2.34 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6})\,\updelta \)175.56, 160.65, 151.38, 139.26, 139.20, 136.11, 132.97, 130.03, 129.85, 129.12, 128.76, 128.16, 127.56, 127.00, 126.52, 123.48, 65.51, 59.27, 19.29. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 69.32; H: 5.13; N: 10.11. Found: C: 69.35; H: 5.10; N: 10.09. mp 235–240 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 415.37.

N-(2-(4-(dimethylamino)phenyl)-4-oxo-5-styrylthiazolidin-3-yl)isonicotinamide (3n): Yield 114 mg, 38% as a light brown solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\,\updelta \) ppm: 9.59 (s, 1H), 8.96 (d, J \(=\) 7.3 Hz, 2H), 7.81 (d, J \(=\) 7.3 Hz, 2H), 7.33–7.16 (m, 7H), 6.67–6.63 (m, 3H), 6.08 (s, 1H), 5.72 (dd, J \(=\) 16.0 Hz, 4.4 Hz, 1H), 4.16 (d, J \(=\) 6.3 Hz, 1H), 2.96 (s, 6H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6})\,\updelta \)175.56, 160.65, 155.51, 151.38, 139.20, 129.12, 128.76, 127.56, 127.39, 127.00, 123.48, 111.70, 67.59, 59.27, 41.91. Anal. Calcd. For \(\hbox {C}_{25}\hbox {H}_{24}\hbox {N}_{4}\hbox {O}_{2}\hbox {S}\): C: 67.51; H: 5.45; N: 12.59. Found: C: 67.53; H: 5.43; N: 12.62. mp 257–262 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 444.26.

N-(2-(3-nitrophenyl)-4-oxo-5-styrylthiazolidin-3-yl)nicotinamide (3o): Yield 177 mg, 59% as a pale yellow solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \) ppm: 9.8 (s, 1H), 8.81 (s, 1H), 8.75 (d, J \(=\) 7.1 Hz, 1H), 8.15 (d, J \(=\) 7.1 Hz, 2H), 8.13 (d, J \(=\) 7.0 Hz, 1H), 7.70–7.19 (m, 8H), 6.55 (d, J \(=\) 15.5 Hz, 1H), 6.25 (s, 1H), 5.67 (dd, J \(=\) 16.0 Hz, 4.5 Hz, 1H), 4.16 (d, J \(=\) 5.9 Hz, 1H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6})\,\updelta \)175.56, 163.83, 150.41, 149.59, 148.59, 142.52, 137.81, 136.11, 131.78, 130.98, 130.03, 129.12, 128.76, 128.33, 127.56, 127.00, 126.76, 119.84, 119.72, 67.78, 59.27. Anal. Calcd. For \(\hbox {C}_{23}\hbox {H}_{18}\hbox {N}_{4}\hbox {O}_{4}\hbox {S}\): C: 61.85; H: 4.07; N: 12.55 Found: C: 61.85; H: 4.07; N: 12.52. mp 245–250 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 446.61.

N-(2-(4-nitrophenyl)-4-oxo-5-styrylthiazolidin-3-yl)nicotinamide (3p): Yield 180 mg, 60% as a yellow brown solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\,\updelta \) ppm: 9.78 (s, 1H), 8.98 (s, 1H), 8.78 (d, J \(=\) 7.1 Hz, 1H), 8.21 (d, J \(=\) 7.1 Hz, 2H), 8.15 (d, J \(=\) 7.0 Hz, 1H), 7.53–7.19 (m, 8H), 6.55 (d, J \(=\) 15.6 Hz, 1H), 6.36 (s, 1H), 5.67 (dd, J \(=\) 16.0 Hz, 3.8 Hz, 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)175.56, 163.83, 150.41, 149.59, 147.85, 147.71, 137.81, 136.11, 131.78, 130.03, 129.12, 128.76, 127.56, 127.00, 125.88, 123.98, 122.76, 67.59, 59.27. Anal. Calcd. For \(\hbox {C}_{23}\hbox {H}_{18}\hbox {N}_{4}\hbox {O}_{4}\hbox {S}\): C: 61.84; H: 4.10; N: 12.54. Found: C: 61.86; H: 4.07; N: 12.58. mp 223–226 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 446.78.

N-(4-oxo-5-styryl-2-(p-tolyl)thiazolidin-3-yl)nicotinamide (3q): Yield 117 mg, 39% as a yellowish white solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\updelta \) ppm: 9.65 (s, 1H), 8.91 (s, 1H), 8.78 (d, J \(=\) 7.1 Hz, 1H), 8.17 (d, J \(=\) 7.1 Hz, 4.3 Hz, 1H), 7.51 (dd, J \(=\) 7.0 Hz, 1H), 7.32–7.19 (m, 9H), 6.64 (d, J \(=\) 15.6 Hz, 1H), 6.21 (s, 1H), 5.71 (dd, J \(=\) 16.1 Hz, 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H), 2.32 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)175.56, 163.83, 150.41, 149.59, 138.33, 137.81, 136.98, 136.11, 131.78, 130.03, 129.55, 129.12, 128.76, 127.56, 127.00, 125.88, 122.76, 67.59, 59.27, 21.13. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 69.39; H: 5.07; N: 10.09. Found: C: 69.36; H: 5.10; N: 10.12. mp 265–270 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 415.84.

N-(4-oxo-5-styryl-2-(o-tolyl)thiazolidin-3-yl)nicotinamide (3r): Yield 114 mg, 34% as a pale yellow solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \) ppm: 9.67 (s, 1H), 8.84 (s, J \(=\) 7.1 Hz, 1H), 8.76 (d, J \(=\) 7.1 Hz, 1H), 8.07 (d, J \(=\) 7.0 Hz, 1H), 7.60–7.16 (m, 10H), 6.70 (d, J \(=\) 15.6 Hz, 1H), 6.27 (s, 1H), 5.04 (dd, J \(=\) 16.1 Hz, 4.7 Hz, 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H), 2.36 (s, 3H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6}) \,\updelta \)175.56, 163.83, 150.41, 149.59, 139.26, 136.11, 132.97, 131.78, 130.03, 129.85, 129.12, 128.76, 128.37, 128.16, 127.56, 127.00, 126.52, 122.70, 65.51, 59.27, 19.29. Anal. Calcd. For \(\hbox {C}_{24}\hbox {H}_{21}\hbox {N}_{3}\hbox {O}_{2}\hbox {S}\): C: 69.35; H: 5.08; N: 10.12. Found: C: 69.38; H: 5.10; N: 10.09. mp 255–260 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 415.09.

N-(2-(4-(dimethylamino)phenyl)-4-oxo-5-styrylthiazolidin-3-yl)nicotinamide (3s): Yield 126 mg, 42% as a brown solid; \(^{1}\)H NMR (400 MHz, \(\hbox {DMSO-d}_{6})\,\,\updelta \) ppm: 9.68 (s, 1H), 9.06 (s, 1H), 8.78 (d, J \(=\) 7.1 Hz, 1H), 8.12 (d, J \(=\) 7.1 Hz, 1H), 7.52 (dd, J \(=\) 7.0 Hz, 2.1 Hz, 1H), 7.33–7.19 (m, 7H), 6.70–6.64 (m, 3H), 6.14 (s, 1H), 5.70 (dd, J \(=\) 16.1 Hz, 4.1 Hz 1H), 4.16 (d, J \(=\) 6.1 Hz, 1H), 2.95 (s, 6H). \(^{13}\)C NMR (100 MHz, \(\hbox {DMSO-d}_{6})\,\updelta \)175.56, 163.83, 155.51, 150.41, 149.59, 136.11, 131.78, 130.03, 129.12, 128.70, 127.56, 127.39, 127.00, 111.70, 67.59, 59.27, 41.91. Anal. Calcd. For \(\hbox {C}_{25}\hbox {H}_{24}\hbox {N}_{4}\hbox {O}_{2}\hbox {S}\): C: 67.52; H: 5.39; N: 12.58. Found: C: 67.55; H: 5.43; N: 12.61. mp 241–244 \({^{\circ }}\hbox {C}\). MS-EI (m/z) 444.52.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Patel, J. & Chikhalia, K.H. Palladium-catalyzed acid-free Fujiwara–Moritani alkenylation of 4-thiazolidinones. Mol Divers 21, 1011–1020 (2017). https://doi.org/10.1007/s11030-017-9756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9756-5

Keywords

Navigation