Skip to main content

Advertisement

Log in

Synthesis and antiproliferative activity of amino-substituted benzimidazo[1,2-\({\varvec{a}}\)]quinolines as mesylate salts designed by 3D-QSAR analysis

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An experimental search for new benzimidazole derivatives with enhanced antiproliferative activity was successfully guided by QSAR modelling. Robust 3D-QSAR models were derived on an available database of compounds with previously measured activities. Our QSAR analysis revealed that an increase of the antiproliferative activities towards H460, HCT 116, MCF-7 and SW 620 cells will be obtained if new compounds are charged at a pH range from 5 to 7 and if their hydrophobicity is increased compared to the dataset compounds. Novel benzimidazo[1,2-a]quinolines bearing quarternary amino groups with corresponding aliphatic chains were designed, and their antiproliferative activities were computationally predicted. Using uncatalysed microwave-assisted amination reactions, 14 novel compounds were obtained to assess their antiproliferative activities towards H460, HCT 116, MCF-7, and SW 620 tumour cell lines in vitro. Novel compounds showed antiproliferative activities at micromolar and submicromolar inhibition concentrations. Experimental measurements of antiproliferative activities validation the QSAR models showing very good agreement between experimentally measured activities and computational predictions. In an attempt to elucidate the mode of action through which benzimidazole derivatives accomplish their antiproliferative activities, thermal denaturation experiments were performed to test their DNA-binding properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Silverman RB (2004) The organic chemistry of drug design and drug action, 2nd edn. Elsevier Academic Press, New York

    Google Scholar 

  2. Gaba M, Singh S, Mohan C (2014) Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur J Med Chem 76:494–505. doi:10.1016/j.ejmech.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  3. Shah K, Chhabra S, Shrivastava SK, Mishra P (2013) Benzimidazole: a promising pharmacophore. Med Chem Res 22:5077–5104. doi:10.1007/s00044-013-0476-9

    Article  CAS  Google Scholar 

  4. Bansal Y, Silakari O (2012) The therapeutic journey of benzimidazoles: a review. Bioorg Med Chem 20:6208–6236. doi:10.1016/j.bmc.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  5. Monforte AM, Ferro S, De Luca L, Lo Surdo G, Morreale F, Pannecouque C, Balzarini J, Chimirri A (2014) Design and synthesis of N1-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 22:1459–1467. doi:10.1016/j.bmc.2013.12.045

    Article  CAS  PubMed  Google Scholar 

  6. Ates-Alagoz Z, Yildiz S, Buyukbingol E (2007) Antimicrobial activities of some tetrahydronaphthalene-benzimidazole derivatives. Chemotherapy 53:110–113. doi:10.1159/000100011

    Article  CAS  PubMed  Google Scholar 

  7. Grogan HM (2006) Fungicide control of mushroom cobweb disease caused by Cladobotryum strains with different benzimidazole resistance profiles. Pest Manag Sci 62:153–161. doi:10.1002/ps.1133

    Article  CAS  PubMed  Google Scholar 

  8. Sharma MC, Sharma S, Sahua NK, Kohlia DV (2013) 3D QSAR kNN-MFA studies on 6-substituted benzimidazoles derivatives as nonpeptide angiotensin II receptor antagonists: a rational approach to antihypertensive agents. J Saudi Chem Soc 17:167–176. doi:10.1016/j.jscs.2011.03.005

    Article  CAS  Google Scholar 

  9. Demeunynck M, Bailly C, Wilson WD (2002) In D.N.A. and R.N.A. Binders. Wiley, Weinheim

    Google Scholar 

  10. Rescifina A, Zagni C, Varrica MG, Pistarà V, Corsaro A (2014) Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur J Med Chem 74:95–115. doi:10.1016/j.ejmech.2013.11.029

    Article  CAS  PubMed  Google Scholar 

  11. Jeong J, Yoon J (2012) Recent progress on fluorescent chemosensors for metal ions. Inorg Chim Acta 381:2–14. doi:10.1016/j.ica.2011.09.011

    Article  CAS  Google Scholar 

  12. Hranjec M, Kralj M, Piantanida I, Sedić M, Šuman L, Pavelić K, Karminski-Zamola G (2007) Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding and antitumor evaluation, part 3. J Med Chem 50:5696–5711. doi:10.1021/jm070876h

    Article  CAS  PubMed  Google Scholar 

  13. Hranjec M, Pavlović G, Marjanović M, Kralj M, Karminski-Zamola G (2010) Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a]quinolines and fluorenes: synthesis, antitumor evaluation in vitro and crystal structure determination. Eur J Med Chem 45:2405–2417. doi:10.1016/j.ejmech.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  14. Perin N, Uzelac L, Piantanida I, Karminski-Zamola G, Kralj M, Hranjec M (2011) Novel biologically active nitro and amino substituted benzimidazo[1,2-a]quinolines. Bioorg Med Chem 19:6329–6339. doi:10.1016/j.bmc.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  15. Perin N, Martin-Kleiner I, Nhili R, Laine W, David-Cordonnier MH, Vugrek O, Karminski-Zamola G, Kralj M, Hranjec M (2013) Biological activity and DNA binding studies of 2-substituted benzimidazo[1,2-a]quinolines bearing different amino side chains. Med Chem Commun 4:1537–1550. doi:10.1039/C3MD00193H

    Article  CAS  Google Scholar 

  16. Perin N, Nhili R, Ester K, Laine W, Karminski-Zamola G, Kralj M, David-Cordonnier MH, Hranjec M (2014) Synthesis, antiproliferative activity and DNA binding properties of novel 5-aminobenzimidazo[1,2-a]quinoline-6-carbonitriles. Eur J Med Chem 80:218–227. doi:10.1016/j.ejmech.2014.04.049

    Article  CAS  PubMed  Google Scholar 

  17. Perin N, Nhili R, Cindić M, Bertoša B, Vušak D, Martin-Kleiner I, Laine W, Karminski-Zamola G, Kralj M, David-Cordonnier MH, Hranjec M (2016) Amino substituted benzimidazo[1,2-a]quinolines: antiproliferative potency, 3D QSAR study and DNA binding properties. Eur J Med Chem 122:530–545. doi:10.1016/j.ejmech.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  18. Bertoša B, Kojić-Prodić B, Ramek M, Piperaki S, Tsantili-Kakoulidou A, Wade R, Tomić S (2003) A new approach to predict the biological activity of molecules based on similarity of their interaction fields and the \(\text{ log }P\) and \(\text{ log }D\) values: application to auxins. J Chem Inf Model 43:1532–1541. doi:10.1021/ci034063n

    Google Scholar 

  19. Zhuang XM, Xiao JH, Li JT, Zhang ZQ, Ruan JX (2006) A simplified model to predict \(P\)-glycoprotein interacting drugs from 3D molecular interaction field. Int J Pharm 309:109–114. doi:10.1016/j.ijpharm.2005.11.009

    Article  CAS  PubMed  Google Scholar 

  20. Fortuna CG, Barresi V, Berellini G, Musumarra G (2008) Design and synthesis of trans 2-(furan-2-yl)vinyl heteroaromatic iodides with antitumor activity. Bioorg Med Chem 16:4150–4159. doi:10.1016/j.bmc.2007.12.042

  21. Ćaleta I, Kralj M, Marjanović M, Bertoša B, Tomić S, Pavlović G, Pavelić K, Karminski-Zamola G (2009) Novel cyano- and amidinobenzothiazole derivatives: synthesis, antitumor evaluation, and X-ray and quantitative structure-activity relationship (QSAR) analysis. J Med Chem 52:1744–1756. doi:10.1021/jm801566q

    Article  PubMed  Google Scholar 

  22. Bertoša B, Aleksić M, Karminiski-Zamola G, Tomić S (2010) QSAR analysis of antitumor active amides and quinolones from thiophene series. Int J Pharm 394:106–114. doi:10.1016/j.ijpharm.2010.05.014

    Article  PubMed  Google Scholar 

  23. Vujasinović I, Paravić-Radičević A, Mlinarić-Majerski K, Brajša K, Bertoša B (2012) Synthesis and biological validation of novel pyrazole derivatives with anticancer activity guided by 3D-QSAR analysis. Bioorg Med Chem 20:2101–2110. doi:10.1016/j.bmc.2012.01.032

    Article  PubMed  Google Scholar 

  24. Hranjec M, Lučić B, Ratkaj I, Kraljević Pavelić S, Piantanida I, Pavelić K, Karminski-Zamola G (2011) Novel imidazo\([4,5-b]\)pyridine and triaza-benzo[\(c\)]fluorene derivatives: synthesis, antiproliferative activity and DNA binding studies. Eur J Med Chem 46:2748–2758. doi:10.1016/j.ejmech.2011.03.062

    Article  CAS  PubMed  Google Scholar 

  25. Cruciani G, Pastor M, Guba W (2000) VolSurf: a new tool for pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 11:S29–S39. doi:10.1016/S0928-0987(00)00162-7

    Article  CAS  PubMed  Google Scholar 

  26. Aleksić M, Bertoša B, Nhili R, Depauw S, Martin-Kleiner I, David-Cordonnier MH, Tomić S, Kralj M, Karminski-Zamola G (2014) Anilides and quinolones with nitrogen-bearing substituents from benzothiophene and thienothiophene series: synthesis, photochemical synthesis, cytostatic evaluation, 3D-derived QSAR analysis and DNA-binding properties. Eur J Med Chem 71:267–281. doi:10.1016/j.ejmech.2013.11.010

    Article  PubMed  Google Scholar 

  27. Aleksić M, Bertoša B, Nhili R, Uzelac L, Jarak I, Depauw S, David-Cordonnier MH, Kralj M, Tomić S, Karminski-Zamola G (2012) Novel substituted benzothiophene and thienothiophene carboxanilides and quinolones: synthesis, photochemical synthesis, DNA-binding properties, antitumor evaluation and 3D-derived QSAR analysis. J Med Chem 55:5011–5060. doi:10.1021/jm300505h

    Google Scholar 

  28. Kuethe J, Wong A, Davies I (2003) Rapid and efficient synthesis of 1\(H\)-Indol-2-yl-1\(H\) quinolin-2-ones. Org Lett 5:3975–3978. doi:10.1021/ol035541i

    Article  CAS  PubMed  Google Scholar 

  29. Cruciani G, Crivori P, Carrupt PA, Testa B (2000) Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. J Mol Struct: THEOCHEM 503:17–30. doi:10.1016/S0166-1280(99)00360-7

    Article  CAS  Google Scholar 

  30. Golmohammadi H, Zahra D, William EA Jr (2012) Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Eur J Pharm Sci 47:421–429. doi:10.1016/j.ejps.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  31. De Maesschalck R, Delphine J-R, Désiré LM (2000) The mahalanobis distance. Chemom Intell Lab 50:1–18

    Article  Google Scholar 

  32. http://dtclab.webs.com/software-tools. Accessed 08 Mar 2017

Download references

Acknowledgements

We greatly appreciate the financial support of the Croatian Science Foundation under the projects: 5596 (Synthesis and cytostatic evaluations of novel nitrogen heterocycles library), 5660 (A multidisciplinary approach to discover selective drugs targeting cancer stem cells: The role of potassium transport—MultiCaST) and IP-2014-09-7309 (SupraCAR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marijana Hranjec or Branimir Bertoša.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 2332 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vušak, D., Perin, N., Martin-Kleiner, I. et al. Synthesis and antiproliferative activity of amino-substituted benzimidazo[1,2-\({\varvec{a}}\)]quinolines as mesylate salts designed by 3D-QSAR analysis. Mol Divers 21, 621–636 (2017). https://doi.org/10.1007/s11030-017-9753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9753-8

Keywords

Navigation