Skip to main content
Log in

3D-QSAR, molecular dynamics simulations, and molecular docking studies on pyridoaminotropanes and tetrahydroquinazoline as mTOR inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cancer is a second major disease after metabolic disorders where the number of cases of death is increasing gradually. Mammalian target of rapamycin (mTOR) is one of the most important targets for treatment of cancer, specifically for breast and lung cancer. In the present research work, Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) studies were performed on 50 compounds reported as mTOR inhibitors. Three different alignment methods were used, and among them, distill method was found to be the best method. In CoMFA, leave-one-out cross-validated coefficients \((q^{2})\), conventional coefficient \((r^{2})\), and predicted correlation coefficient \((r^{2}_{\mathrm{pred}})\) values were found to be 0.664, 0.992, and 0.652, respectively. CoMSIA study was performed in 25 different combinations of features, such as steric, electrostatic, hydrogen bond donor, hydrogen bond acceptor, and hydrophobic. From this, a combination of steric, electrostatic, hydrophobic (SEH), and a combination of steric, electrostatic, hydrophobic, donor, and acceptor (SEHDA) were found as best combinations. In CoMSIA (SEHDA), \(q^{2}\), \(r^{2}\) and \(r^{2}_{\mathrm{pred}}\) were found to be 0.646, 0.977, and 0.682, respectively, while in the case of CoMSIA (SEH), the values were 0.739, 0.976, and 0.779, respectively. Contour maps were generated and validated by molecular dynamics simulation-assisted molecular docking study. Highest active compound 19, moderate active compound 15, and lowest active compound 42 were docked on mTOR protein to validate the results of our molecular docking study. The result of the molecular docking study of highest active compound 19 is in line with the outcomes generated by contour maps. Based on the features obtained through this study, six novel mTOR inhibitors were designed and docked. This study could be useful for designing novel molecules with increased anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jemal A, Bray F, Melissa M, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. World Health Organization (WHO), Geneva. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 26 March 2017

  3. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR (2014) Targeting PI3K/AKT/mTOR pathway in non-small cell lung cancer. Biochem Pharmacol 90:197–207. doi:10.1016/j.bcp.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  4. Marinov M, Fischer B, Arcaro A (2007) Targeting mTOR signaling in lung cancer. Crit Rev Oncol Hemat 63:172–182. doi:10.1016/j.critrevonc.2007.04.002

    Article  Google Scholar 

  5. Kim KM, Heo DR, Lee J, Park JS, Baek MG, Yi JM, Kim H, Bang OS (2015) 5,3\(^{\prime }\)-Dihydroxy-6,7,4\(^{\prime }\)-trimethoxyflavanone exerts its anticancer and antiangiogenesis effects through regulation of the Akt/mTOR signalling pathway in human lung cancer cells. Chem Biol Interact 225:32–39. doi:10.1016/j.cbi.2014.10.033

    Article  CAS  PubMed  Google Scholar 

  6. Efeyan A, Sabatini DM (2010) mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 22:169–176. doi:10.1016/j.ceb.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  7. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223. doi:10.1038/nature12122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiarini F, Evangelisti C, McCubrey J, Martelli AM (2015) Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci 36:124–135. doi:10.1016/j.tips.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  9. Lipinski CA, Lambardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. doi:10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  10. Estrada AA, Shore DG, Blackwood E, Chen Y, Deshmukh G, Ding X, Dipasquale AG, Epler JA, Friedman LS, Koehler MFT, Liu L, Malek S, Nonomiya J, Ortwine DF, Pei Z, Sideris S, St-jean F, Trinh L, Truong T, Lyssikatos JP (2013) Pyrimidoaminotropanes as potent, selective, and efficacious small molecule kinase inhibitors of the mammalian target of rapamycin (mTOR). J Med Chem 56:3090–3101. doi:10.1021/jm400194n

    Article  CAS  PubMed  Google Scholar 

  11. Pei Z, Blackwood E, Liu L, Malek S, Belvin M, Koehler MFT, Ortwine DF, Chen H, Cohen F, Kenny JR, Bergeron P, Lau K, Ly C, Zhao X, Estrada AA, Truong T, Epler JA, Nonomiya J, Trinh L, Sideris S, Lesnick J, Bao L, Vijapurkar U, Mukadam S, Tay S, Deshmukh G, Chen Y, Ding X, Friedman LS, Lyssikatos JP (2013) Discovery and biological profiling of potent and selective mTOR inhibitor GDC-0349. J Med Chem 4:103–107. doi:10.1021/ml3003132

    CAS  Google Scholar 

  12. Koehler MFT, Bergeron P, Blackwood E, Bowman KK, Chen Y, Deshmukh G, Ding X, Epler J, Lau K, Lee L, Liu L, Ly C, Malek S, Nonomiya J, Oeh J, Ortwine DF, Sampath D, Sideris S, Trinh L, Truong T, Wu J, Pei Z, Lyssikatos JP (2012) Potent, selective, and orally bioavailable inhibitors of the mammalian target of rapamycin kinase domain exhibiting single agent antiproliferative activity. J Med Chem 55:10958–10971. doi:10.1021/jm301389h

    Article  CAS  PubMed  Google Scholar 

  13. Borisa A, Bhatt HG (2015) 3D-QSAR (CoMFA, CoMFA-RG, CoMSIA) and molecular docking study of thienopyrimidine and thienopyridine derivatives to explore structural requirements for aurora-B kinase inhibition. Euro J Pharm Sci 79:1–12. doi:10.1016/j.ejps.2015.08.017

    Article  CAS  Google Scholar 

  14. Sridhar J, Foroozesh M, Stevens CLK (2011) QSAR models of cytochrome P450 enzyme 1A2 inhibitors using CoMFA, CoMSIA and HQSAR. SAR QSAR Environ Res 22:681–697. doi:10.1080/1062936X.2011.623320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang JH, Hou QQ, Tang K, Cheng XL, Dong LH, Liu YJ, Liu CB (2011) Receptor-based QSAR study for a series of 3,3-disubstituted-5-aryl oxindoles and 6-aryl benzimidazol-2-ones derivatives as progesterone receptor inhibitors. SAR QSAR Environ Res 22:775–799. doi:10.1080/1062936X.2011.623324

    Article  CAS  PubMed  Google Scholar 

  16. Saqib U, Kumar B, Siddiqi MI (2011) Structural investigations of anthranilimide derivatives by CoMFA and CoMSIA 3D-QSAR studies reveal novel insight into their structures toward glycogen phosphorylase inhibition. SAR QSAR Environ Res 22:411–449. doi:10.1080/1062936X.2011.569898

    Article  CAS  PubMed  Google Scholar 

  17. Chaube UJ, Bhatt HG (2016) 3D-QSAR, molecular dynamics simulations and molecular docking studies of benzoxazepine moiety as mTOR inhibitor for the treatment of lung cancer. Bioorg Med Chem Lett 26:864–874. doi:10.1016/j.bmcl.2015.12.075

    Article  CAS  PubMed  Google Scholar 

  18. Sybyl X (2011) Molecular modelling software, Tripos Certara, V. 1.2, St. Louis. www.certara.com

  19. Cho S, Choi MJ, Kim M, Lee S, Lee J, Lee SJ, Cho H, Lee KT, Lee Y (2015) Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells. J Mol Struct 1084:294–301. doi:10.1016/j.molstruc.2014.12.046

    Article  CAS  Google Scholar 

  20. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  21. Damre MV, Gangwal RP, Dhoke GV, Lalit M, Sharma D, Khandelwal K, Sangamwar AT (2014) 3D-QSAR and molecular docking studies of amino-pyrimidine derivatives as PknB inhibitors. J Taiwan Inst Chem Eng 45:354–364. doi:10.1016/j.jtice.2013.05.016

    Article  CAS  Google Scholar 

  22. Vaidya A, Jain AK, Prashantha Kumar BR, Sastry GN, Kashaw SK, Agrawal RK (2014) CoMFA, CoMSIA, kNN MFA and docking studies of 1,2,4-oxadiazole derivatives as potent caspase-3 activators. Arab J Chem. doi:10.1016/j.arabjc.2014.05.034

  23. Caballero J (2010) 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. J Mol Graph Model 29:363–371. doi:10.1016/j.jmgm.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  24. Zhi H, Zheng J, Chang Y, Li Q, Liao G, Wang Q, Sun P (2015) QSAR studies on triazole derivatives as sglt inhibitors via CoMFA and CoMSIA. J Mol Struct 1098:199–205. doi:10.1016/j.molstruc.2015.06.004

  25. Halim SA, Haq ZU (2015) Structure based 3D-QSAR studies of interleukin-2 inhibitors: comparing the quality and predictivity of 3D-QSAR models obtained from different alignment methods and charge calculations. Chem Biol Interact 238:9–24. doi:10.1016/j.cbi.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, He H, Wang J, Han C, Feng J, Zhang S, Yang L (2015) Exploring details about structure requirements based on novel CGRP receptor antagonists urethanamide, aspartate, succinate and pyridine derivatives by in silico methods. J Mol Struct 1074:294–301. doi:10.1016/j.molstruc.2014.06.025

    Article  Google Scholar 

  27. Pavletich NP, Yang H (2013) Structure of mTORDeltaN-mLST8-PI-103 complex. http://www.rcsb.org/pdb/explore/explore.do?structureId=4jt6

  28. Wang F, Yang W, Shi Y, Le G (2015) Structural analysis of selective agonist of thyroid hormone receptor \(\beta \) using 3D-QSAR and molecular docking. J Taiwan Inst Chem Eng 49:1–18. doi:10.1016/j.jtice.2014.11.009

    Article  Google Scholar 

  29. Patel S, Patel B, Bhatt H (2016) 3D-QSAR studies on 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide derivatives as HIV-1 integrase inhibitors. J Taiwan Inst Chem Eng 59:61–68. doi:10.1016/j.jtice.2015.07.024

    Article  CAS  Google Scholar 

  30. Cotrim CA, Oliveira SC, Eduardo BS, Fonseca FV, Baldissera L, Antunes E, Ximenes RM, Monteiro HSA, Rabello MM, Hernandes MZ, Toyama DDO, Toyama MH (2011) Quercetin as an inhibitor of snake venom secretory phospholipase A2. Chem Biol Interact 189:9–16. doi:10.1016/j.cbi.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  31. Babu S, Sohn H, Madhavan T (2015) Computational analysis of CRTh2 receptor antagonist: a ligand-based CoMFA and CoMSIA approach. Comput Biol Chem 56:109–121. doi:10.1016/j.compbiolchem.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  32. Puntambekar DS, Giridhar S, Yadav MR (2006) Understanding the antitumor activity of novel tricyclicpiperazinyl derivatives as farnesyltransferase inhibitors using CoMFA and CoMSIA. Eur J Med Chem 41:1279–1292. doi:10.1016/j.ejmech.2006.07.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Nirma University, Ahmedabad, India for providing necessary facilities to carry out the research work, which is a part of Doctor of Philosophy (Ph.D.) research work of Udit Chaube, to be submitted to Nirma University, Ahmedabad, India. Udit Chaube is thankful to Department of Science and Technology (DST), Govt. of India for providing INSPIRE fellowship (IF140932).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardik Bhatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11030_2017_9752_MOESM1_ESM.pdf

Supplementary Materials: Scatter plot of CoMFA model, CoMSIA model (SEHDA), and CoMSIA model (SEH); molecular dynamics simulations study of compounds 19, 15 and 42 with respect to potential energy, kinetic energy and temperature; Plot of RMSD values of docked ligand Vs MD simulation time; molecular docking study of compounds 19, 15 and 42; designed molecules with tetrahydroquinoline scaffold; general features required for mTOR inhibition in compound S(1) and its simulated docked conformer in mTOR are provided in the supplementary material. (pdf 3.37MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaube, U., Bhatt, H. 3D-QSAR, molecular dynamics simulations, and molecular docking studies on pyridoaminotropanes and tetrahydroquinazoline as mTOR inhibitors. Mol Divers 21, 741–759 (2017). https://doi.org/10.1007/s11030-017-9752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9752-9

Keywords

Navigation