Skip to main content
Log in

Novel antimitotic agents related to tubuloclustin: synthesis and biological evaluation

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Tubuloclustin [N-(7-adamant-2-yloxy-7-oxoheptanoyl)-N-deacetylcolchicine], a highly cytotoxic anti-tubulin compound is known for its ability to promote microtubule disassembly followed by the formation of tubulin clusters of unique morphology. Three series of antimitotic agents related to tubuloclustin were designed and synthesized in order to enhance the molecular diversity of “tubuloclustin-like” family of compounds. The series of compounds with modified adamantane moiety was highly potent in cytotoxic effect on human lung carcinoma A549 cells (EC50 = 6–400 nM) and was active in affecting the microtubule arrays and induction of strong tubulin clusterization. In two other sets of compounds, the colchicine moiety of tubuloclustin was replaced by podophyllotoxin or combretastatin A-4. All combretastatin A-4 derivatives displayed noticeable cytotoxic activity (\(\hbox {EC}50=0.8{-}1.6\,\upmu \hbox {M}\)) but their effect on microtubules depended on the position of the linker attachment. Podophyllotoxin derivatives were also toxic to A549 cells (\(\hbox {EC}50=0.38{-}0.50\,\upmu \hbox {M}\)) and caused both microtubule depolymerization and some tubulin clustering. The data obtained gave additional evidence that the whole panel of C7-colchicine, podophyllotoxin and combretastatin derivatives could manifest clustering effect, and the strength of this effect correlated with cytotoxic activity of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31:443–481. doi:10.1002/med.20242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicines and a stathmin-like domain. Nature 428:198–202. doi:10.1038/nature02393

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, Wirf P, Hamel E, Gussio R (2005) A Common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J Med Chem 48:6107–6116. doi:10.1021/jm050502t

    Article  CAS  PubMed  Google Scholar 

  4. Zefirova ON, Nurieva EV, Shishov DV, Baskin II, Fuchs F, Lemcke H, Schröder F, Weiss DG, Zefirov NS, Kuznetsov SA (2011) Synthesis and SAR requirements of adamantane—colchicine conjugates with both microtubule depolymerizing and tubulin clustering activities. Bioorg Med Chem 19:5529–5538. doi:10.1016/j.bmc.2011.07.040

    Article  CAS  PubMed  Google Scholar 

  5. Zefirova ON, Lemcke H, Lantow M, Nurieva EV, Wobith B, Onishchenko GE, Hoenen A, Griffiths G, Zefirov NS, Kuznetsov SA (2013) Unusual tubulin-clustering ability of definitely C7-modified colchicine analogues. ChemBioChem 14:1444–1449. doi:10.1002/cbic.201300143

    Article  CAS  PubMed  Google Scholar 

  6. Zefirova ON, Nurieva EV, Glazkova YS, Zefirov NA, Mamaeva AV, Wobith B, Romanenko VI, Lesnaia NA, Treshalina HM, Kuznetsov SA (2014) Antiproliferative activity of tubuloclustin and its steroid analogues. Pharm Chem J 48:373–378. doi:10.1007/s11094-014-1113-8

    Article  CAS  Google Scholar 

  7. Mullen GB, Georgiev VSt (1986) Synthesis of substituted spiro[azetidin-2-one-4,2’(or 3,2’)-tricyclo[3.3.1.13,7]decane] derivatives. Heterocycles 24:3441–3446. doi:10.3987/R-1986-12-3441

    Article  CAS  Google Scholar 

  8. Kolocouris A, Tzitzoglaki C, Johnson FB, Zell R, Wright AK, Cross TA, Tietjen I, Fedida D, Busath DD (2014) Aminoadamantanes with persistent in vitro efficacy against H1N1 influenza A. J Med Chem 57:4629–4639. doi:10.1021/jm500598u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klimochkin YN, Bagrii EI, Dolgopolova TN, Moiseev TK (1988) Synthesis of alkoxycarbonylaminoadamantanes and acetylamino-adamantanes in nitric acid. Bull Acad Sci USSR Div Chem Sci 27:757–759. doi:10.1007/BF01455495 (Engl. Transl.)

    Article  Google Scholar 

  10. Wanka L, Cabrele C, Vanejews M, Schreiner PR (2007) \(\gamma \)-Aminoadamantanecarboxylic acids through direct C-H bond amidations. Eur J Org Chem 2007:1474–1490. doi:10.1002/ejoc.200600975

    Article  Google Scholar 

  11. Lipton StA (2004) Methods for treating neuropsychiatric disorders with NMDA receptor antagonists. Patent US2004/122090 A1

  12. Zefirova ON, Nurieva EV, Lemcke H, Ivanov AA, Zyk NV, Weiss DG, Kuznetsov Zefirov NS (2008) Design, synthesis and bioactivity of simplified taxol analogues on the basis of bicyclo[3.3.1]nonane derivatives. Mendeleev Commun 18:183–186. doi:10.1016/j.mencom.2008.07.003

    Article  CAS  Google Scholar 

  13. Adcock W, Kok GB (1987) Transmission of polar substituent effects in saturated systems: synthesis and fluorine-19 NMR study of 3-substituted adamant-1-yl fluorides. J Org Chem 52:356–364. doi:10.1021/jo00257a011

    Article  CAS  Google Scholar 

  14. le Noble WJ, Srivastava S, Cheung CK (1983) 5- tert-Butyladamantan-2-one. J Org Chem 48:1099–1101. doi:10.1021/jo00155a034

    Article  Google Scholar 

  15. Aranyi P, Bata I, Batory S, Boronkay É, Bovy P (2005) Adamantane and azabicyclo-octane and nonane derivatives, process of their preparation and their use as DPP-IV inhibitors. Patent WO/2005/021536

  16. Stetter H, Gärtner J, Tacke P (1965) Neue Möglichkeiten des Adamantan-Ringschlusses. Angew Chem 77:171–171. doi:10.1002/ange.19650770410

    Article  CAS  Google Scholar 

  17. Bagnato JD, Eilers AL, Horton RA, Grissom CB (2004) Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin. J Org Chem 69:8987–8996. doi:10.1021/jo049953w

  18. Xiao C-F, Zou Y, Du J-L, Sun H-Y, Liu X-K (2012) Hydroxyl substitutional effect on selective synthesis of cis, trans stilbenes and 3-arylcoumarins through Perkin condensation. Synth Commun 42:1243–1258. doi:10.1080/00397911.2010.538889

    Article  CAS  Google Scholar 

  19. Gaukroger K, Hadfield JA, Hepworth LA, Lawrence NJ, McGown AT (2001) Novel syntheses of cis and trans isomers of combretastatin A-4. J Org Chem 66:8135–8138. doi:10.1021/jo015959z

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Zou Y, Sun H-Y, Liu X-K, Xiao C-F, Sun J, He S-J, Li J (2011) Practical and green synthesis of combretastatin A-4 and its prodrug CA4P using renewable biomass-based starting materials. Synthesis 2011:217–222. doi:10.1055/s-0030-1258358

    Article  Google Scholar 

  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

  22. Al-Haddad A, Shonn MA, Redlich B, Blocker A, Burkhardt JK, Yu H, Hammer \(3^{{\rm rd}}\) JA, Weiss DG, Steffen W, Griffiths G, Kuznetsov SA (2001) Myosin Va bound to phagosomes binds to F-actin and delays microtubule-dependent motility. Mol Biol Cell 12:2742–2755. doi:10.1091/mbc.12.9.2742

  23. Borrel C, Thoret S, Cachet X, Guénard D, Tillequin F, Koch M, Michel S (2005) New antitubulin derivatives in the combretastatin A4 series: synthesis and biological evaluation. Bioorg Med Chem 13:3853–3864. doi:10.1016/j.bmc.2005.02.039

    Article  CAS  PubMed  Google Scholar 

  24. Hill JW, Carothers WH (1933) Studies of polymerization and ring formation. XIX. Many-membered cyclic anhydrides. J Am Chem Soc 55:5023–5031. doi:10.1021/ja01339a054

    Article  CAS  Google Scholar 

  25. Al-Haddad A, Shonn MA, Redlich B, Blocker A, Burkhardt JK, Yu H, Hammer, \(3^{{\rm rd}}\) JA, Weiss DG, Steffen W, Griffiths G, Kuznetsov SA (2001) Myosin Va bound to phagosomes binds to F-actin and delays microtubule-dependent motility. Mol Biol Cell 12:2742–2755. doi:10.1091/mbc.12.9.2742

Download references

Acknowledgements

The work was supported by Russian Foundation for Basic Research (project 15-03-04894), Russian Academy of Sciences and by the German organization DAAD (German Academic Exchange Service) in the frame of a Scientific Cooperation Agreement between Moscow and Rostock Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya V. Nurieva.

Additional information

During final preparation of this manuscript Nikolay S. Zefirov sadly died. This paper is dedicated to his memory.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 2444 KB)

Appendix: Supplementary materials

Appendix: Supplementary materials

Supplementary data contain the pictures of computer overlay of the structures, additional experimental data and copies of \(^{1}\hbox {H}\) and \(^{13}\hbox {C NMR}\) spectra of synthesized compounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zefirova, O.N., Nurieva, E.V., Wobith, B. et al. Novel antimitotic agents related to tubuloclustin: synthesis and biological evaluation. Mol Divers 21, 547–564 (2017). https://doi.org/10.1007/s11030-017-9739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9739-6

Keywords

Navigation