Skip to main content
Log in

Advancements in tetronic acid chemistry. Part 2: Use as a simple precursor to privileged heterocyclic motifs

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This work highlights the literature of one of the most valuable moieties in the field of organic chemistry. In this review, the chemistry of tetronic acid as a simple precursor to privileged heterocyclic motifs is described. The synthetic procedures of different fused heterocycles incorporating a furan moiety are described. Fused heterocycles are classified as bicyclic, tricyclic, tetracyclic and spiro-fused pyran derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dabiri M, Tisseh ZN, Bahramnejad M, Bazgir A (2011) Sonochemical multi-component synthesis of spirooxindoles. Ultrason Sonochem 18:1153–1159. doi:10.1016/j.ultsonch.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  2. Baba A, Oda T, Taketomi S, Notoya K, Nishimura A, Makino H, Sohda T (1999) Studies on disease-modifying antirheumatic drugs. III. Bone resorption inhibitory effects of ethyl 4-(3,4-dimethoxyphenyl)-6,7-dimethoxy-2-(1,2,4-triazol-1-ylmethyl)quinoline-3-carboxylate (TAK-603) and related compounds. Chem Pharm Bull 47:369–374. doi:10.1248/cpb.47.369

  3. Skrastin’sh IP, Vitolinya RO, Kastron VV, Avakumova GM, Dubur GY (1992) Cardiovascular activity of difuropyridines. Pharm Chem J 26:416–418. http://link.springer.com/article/10.1007%2FBF00772904

  4. Iida A, Kano M, Kubota Y, Koga K, Tomioka K (1997) Targeting DNA topoisomerase II with podophyllotoxin aza-analogue. Bioorg Med Chem Lett 7:2565–2566. doi:10.1016/S0960-894X(97)10029-4

    Article  CAS  Google Scholar 

  5. Hehn JP, Gamba-Sánchez D, Kemmler M, Fleck M, Basler B, Bach T (2010) [2+2]-Photocycloaddition reactions of tetronic acid esters and amides. Synthesis 2308–2312: doi:10.1055/s-0029-1218793

  6. Bourdreux Y, Bodio E, Willis C, Billaud C, Gall TL, Mioskowski C (2008) Synthesis of vulpinic and pulvinic acids from tetronic acid. Tetrahedron 64:8930–8937. doi:10.1016/j.tet.2008.06.058

    Article  CAS  Google Scholar 

  7. Kozlov NG, Bondarev SL, Kadutskii AP, Basalaeva LI, Pashkovskii FS (2008) Tetronic acid in reaction with aromatic aldehydes and 2-naphthylamine. Investigation of fluorescent and nonlinear-optical characteristics of compounds obtained. Russ J Org Chem 44:1031–1037. doi:10.1134/S1070428008070142

  8. Kadutskii AP, Kozlov NG, Pashkovskii FS (2009) Synthesis of benzo[\(f\)]quinoline derivatives by three-component condensation of tetronic acid with naphthalen-2-amine and formaldehyde. Russ J Org Chem 45:399–403. doi:10.1134/S1070428009030087

  9. Shaabani A, Soleimani E, Sarvary A, Rezayan AH (2008) A simple and efficient approach to the synthesis of 4H-furo[3,4-b]pyrans via a three-component reaction of isocyanides. Bioorg Med Chem Lett 18:3968–3970. doi:10.1016/j.bmcl.2008.06.014

    Article  CAS  PubMed  Google Scholar 

  10. Shaabani A, Sarvary A, Keshipour S, Rezayan AH, Ghadari R (2010) Unexpected Knoevenagel self-condensation reaction of tetronic acid: synthesis of a new class of organic heterocyclic salts. Tetrahedron 66:1911–1914. doi:10.1016/j.tet.2010.01.009

    Article  CAS  Google Scholar 

  11. Abdou MM, El-Saeed RA, Bondock S (2015) Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions. Arab J Chem. doi:10.1016/j.arabjc.2015.06.012

  12. Abdou MM, El-Saeed RA, Bondock S (2015) Recent advances in 4-hydroxycoumarin chemistry. Part 2: Scaffolds for heterocycle molecular diversity. Arab J Chem. doi:10.1016/j.arabjc.2015.06.029

  13. Abdou MM (2014) 3-Acetyl-4-hydroxycoumarin: Synthesis, reactions and applications. Arab J Chem. doi:10.1016/j.arabjc.2014.04.005

  14. Abdou MM (2014) Chemistry of 4-Hydroxy-2(1H)-quinolone. Part 1: Synthesis and reactions. Arab J Chem. doi:10.1016/j.arabjc.2014.01.012

  15. Abdou MM (2014) Chemistry of 4-hydroxy-2(1H)-quinolone. Part 2. As synthons in heterocyclic synthesis. Arab J Chem. doi:10.1016/j.arabjc.2015.06.012

  16. Abdou MM (2014) Utility of 4-hydroxythiocoumarin in organic synthesis. Arab J Chem. doi:10.1016/j.arabjc.2014.06.002

  17. Metwally MA, Bondock S, El-Desouky EI, Abdou MM (2013) A facile synthesis, tautomeric structure of novel 4-arylhydrazono-3-(2-hydroxyphenyl)-2-pyrazolin-5-ones and their application as disperse dyes. Color Technol 129:418–424. doi:10.1111/cote.12052

    Article  CAS  Google Scholar 

  18. Metwally MA, Bondock S, El-Desouky EI, Abdou MM (2012) A worthy insight into the dyeing applications of azo pyrazolyl dyes. Int J Modern Org Chem 1:165–192

    CAS  Google Scholar 

  19. Metwally MA, Bondock S, El-Desouky EI, Abdou MM (2012) Pyrazol-5-ones: tautomerism, synthesis and reactions. Int J Modern Org Chem 1:19–54

    CAS  Google Scholar 

  20. Metwally MA, Bondock S, El-Desouky EI, Abdou MM (2012) Synthesis, structure investigation and dyeing assessment of novel bisazo disperse dyes derived from 3-(2-hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones for dyeing polyester fabrics. J Korean Chem Soc 56:348–356. doi:10.5012/jkcs.2012.56.3.348

    Article  CAS  Google Scholar 

  21. Metwally MA, Bondock S, El-Desouky EI, Abdou MM (2012) Synthesis, structure elucidation and application of some new azo disperse dyes derived from 4-hydroxycoumarin for dyeing polyester fabrics. Am J Chem 2:347–354. doi:10.5923/j.chemistry.20120206.09

    Article  CAS  Google Scholar 

  22. Metwally MA, Bondock S, El-Desouky EI, Abdou MM (2012) Synthesis, tautomeric structure, dyeing characteristics, and antimicrobial activity of novel 4-(2-arylazophenyl)-3-(2-hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones. J Korean Chem Soc 56:82–91. doi:10.5012/jkcs.2012.56.1.082

    Article  CAS  Google Scholar 

  23. Metwally MA, Bondock S, El-Desouky EI, Abdou MM (2013) Synthesis, spectroscopic studies and technical evaluation of novel disazo disperse dyes derived from 3-(2-hydroxyphenyl)-2-pyrazolin-5-ones for dyeing polyester fabrics. Am J Chem 3:59–67. doi:10.5923/j.chemistry.20130303.04

    Google Scholar 

  24. Abdou MM, El-Saeed RA, Abozeid MA, Elattar KM, Zaki EG, Barakat Y, Ibrahim V, Fathy M, Amine M, Bondock S (2015) Advancements in tetronic acid chemistry. Part 1: Synthesis and reactions. Arab J Chem. doi:10.1016/j.arabjc.2015.11.004

  25. Shaabani A, Amini MM, Ghasemi S, Ghadari R, Rezayan AH, Fazaeli Y, Feizi S (2010) Pyridine-functionalized MCM-41 as an efficient and recoverable catalyst for the synthesis of Pyran annulated heterocyclic systems. Chem Pharm Bull 58:270–272. doi:10.1248/cpb.58.270

    Article  CAS  PubMed  Google Scholar 

  26. Babakhani N, Keshipoor S (2013) TiO\(_{2}\) and TiO\(_{2}\) nanoparticles as efficient and recoverable catalysts for the synthesis of pyran annulated heterocyclic systems. Res Chem Intermed 39:2401–2406. doi:10.1007/s11164-012-0766-8

  27. Damavandi S, Sandaroos R, Mohammadi A (2013) Ultrasonic-assisted Cu-catalyzed multicomponent synthesis of furo[3,4-b]pyrazolo[4,3-f]quinolinones. Heterocycl Commun 19:105–108. doi:10.1515/hc-2011-0086

    Article  CAS  Google Scholar 

  28. Peng J-H, Jia R-H, Ma N, Zhang G, Wu F-Y, Cheng C, Tu S-J (2013) A facile and expeditious microwave-assisted synthesis of furo[3,4-b]indeno[2,1-f]quinolin-1-one derivatives via multicomponent reaction. J Heterocycl Chem 50:899–902. doi:10.1002/jhet.965

    Article  CAS  Google Scholar 

  29. Shi D-Q, Yao H (2009) Facile and clean synthesis of furopyridine derivatives via three-component reaction in aqueous media without catalyst. Synth Commun 39:2481–2491. doi:10.1080/00397910802656034

    Article  CAS  Google Scholar 

  30. Tu S-J, Zhang Y, Jiang H, Jiang B, Zhang J-Y, Jia R-H, Shi F (2007) A simple synthesis of furo[3\(\prime \),4\(\prime \):5,6]pyrido[2,3-d]pyrimidine derivatives through multicomponent reactions in water. Eur J Org Chem 9:1522–1528. doi:10.1002/ejoc.200600913

    Article  Google Scholar 

  31. Wang S-L, Cheng C, Wu F-Y, Jiang B, Shi F, Tu S-J, Rajale T, Li G (2011) Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron 67:4485–4493. doi:10.1016/j.tet.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang SL, Cheng C, Wu F-Y, Li J, Jiang B (2011) An efficient three-component tandem reaction leading to pentacyclic isoindole-fused Benzo[b,e][1,4]diazepines in water. Chem Lett 40:834–836. doi:10.1246/cl.2011.834

    Article  CAS  Google Scholar 

  33. Shaker RM, Mahmoud AF, Abdel-Latif FF (2005) Facile one pot microwave assisted solvent-free synthesis of novel spiro-fused pyran derivatives via the three-component condensation of ninhydrin with malononitrile and active methylene compounds. J Chin Chem Soc 52:563–567. doi:10.1002/jccs.200500083

    Article  CAS  Google Scholar 

  34. Li Y, Chen H, Shi C, Shi D, Ji S (2010) Efficient one-pot synthesis of spirooxindole derivatives catalyzed by l-proline in aqueous medium. J Comb Chem 12:231–237. doi:10.1021/cc9001185

    Article  CAS  PubMed  Google Scholar 

  35. Wu Q, Feng H, Guo D-D, Yi M-S, Wang X-H, Jiang B, Tu S-J (2013) Microwave-assisted aqueous multicomponent reaction: facile synthesis of polyfunctionalized indoline-spiro fused pyran derivatives. J Heterocycl Chem 50:599–602. doi:10.1002/jhet.1537

    Article  CAS  Google Scholar 

  36. Han C, Zhang T, Zhang A, Wang D, Shi W, Tao J (2014) Efficient catalyst-free one-pot three-component synthesis of novel spirooxindole derivatives, and their cytotoxic activities. Synthesis 1389–1398: doi:10.1055/s-0033-1341028

  37. Dabiri M, Tisseh ZN, Nobahar M, Bazgir A (2011) Organic reaction in water: a highly efficient and environmentally friendly synthesis of spiro compounds catalyzed by L-proline. Helv Chim Acta 94:824–830. doi:10.1002/hlca.201000307

  38. Chen H, Shi D (2010) Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J Comb Chem 12:571–576. doi:10.1021/cc100056p

    Article  CAS  PubMed  Google Scholar 

  39. Tratrat C, Giorgi-Renault S, Husson HP (2002) A multicomponent reaction for the one-pot synthesis of 4-Aza-2,3-didehydropodophyllotoxin and derivatives. Org Lett 4:3187–3189. doi:10.1021/ol0200908

    Article  CAS  PubMed  Google Scholar 

  40. Tu S, Zhang Y, Zhang J, Jiang B, Jia R, Zhang J, Ji S (2006) A Simple procedure for the synthesis of 4-Aza-podophyllotoxin Derivatives in water under microwave irradiation conditions. Synlett 2785–2790: doi:10.1055/s-2006-950279

  41. Tu S, Zhang Y, Jiang B, Jia R, Zhang J, Zhang J, Ji S (2006) One-pot synthesis of N-substituted azapodophyllotoxin derivatives under microwave irradiation. Synthesis 3874–3882: doi:10.1055/s-2006-950297

  42. Tu S, Zhang Y, Jia R, Jiang B, Zhang J, Ji S (2006) A multi-component reaction for the synthesis of N-substituted furo[3,4-b]quinoline derivatives under microwave irradiation. Tetrahedron Lett 47:6521–6525. doi:10.1016/j.tetlet.2006.07.035

    Article  CAS  Google Scholar 

  43. Shi C-L, Chen H, Shi D (2012) An efficient one-pot three-component synthesis of tetrahydrofuro[3,4-b]quinoline-1,8(3H,4H)-dione derivatives catalyzed by L-proline. J Heterocycl Chem 49:125–129. doi:10.1002/jhet.782

    Article  CAS  Google Scholar 

  44. Shi F, Ma N, Zhang Y, Zhang G, Jiang B, Tu SJ (2010) Unexpected and green synthesis of azapodophyllotoxin derivatives via microwave-assisted multicomponent reactions in ammonia water. Synth Commun 40:235–241. doi:10.1080/00397910902964825

    Article  Google Scholar 

  45. Shi F, Zeng X-N, Zhang G, Ma N, Jiang B, Tu S (2011) Facile synthesis of new 4-aza-podophyllotoxin analogs via microwave-assisted multi-component reactions and evaluation of their cytotoxic activity. Bioorg Med Chem Lett 21:7119–7123. doi:10.1016/j.bmcl.2011.09.082

    Article  CAS  PubMed  Google Scholar 

  46. Kumar A, Alegria AE (2010) Synthesis of novel functionalized 4-aza-2,3-didehydropodophyllotoxin derivatives with potential antitumor activity. J Heterocycl Chem 47:1275–1282. doi:10.1002/jhet.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andreoli M, Persico M, Kumar A, Orteca N, Kumar V, Pepe A, Mahalingam S, Alegria AE, Petrella L, Sevciunaite L, Camperchioli A (2014) Identification of the first inhibitor of the GBP1:PIM1 interaction. implications for the development of a new class of anticancer agents against paclitaxel resistant cancer cells. J Med Chem 57:7916–7932. doi:10.1021/jm5009902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Magedov IV, Manpadi M, van Slambrouck S, Steelant WFA, Rozhkova E, Przheval’skii NM, Rogelj S, Kornienko A (2007) Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J Med Chem 50:5183–5192. doi:10.1021/jm070528f

    Article  CAS  PubMed  Google Scholar 

  49. Magedov IV, Manpadi M, Rozhkova E, Przheval’skii NM, Rogelj S, Shors ST, Steelant WFA, Van slambrouck S, Kornienko A (2007) Structural simplification of bioactive natural products with multicomponent synthesis: dihydropyridopyrazole analogues of podophyllotoxin. Bioorg Med Chem Lett 17:1381–1385. doi:10.1016/j.bmcl.2006.11.095

    Article  CAS  PubMed  Google Scholar 

  50. Magedov IV, Frolova L, Manpadi M, Bhoga UD, Tang H, Evdokimov NM, George O, Hadje GK, Renner S, Getlik M, Kinnibrugh TL (2011) Anticancer properties of an important drug lead podophyllotoxin can be efficiently mimicked by diverse heterocyclic scaffolds accessible via one-step synthesis. J Med Chem 54:4234–4246. doi:10.1021/jm200410r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Semenova MN, Kiselyov AS, Tsyganov DV, Konyushkin LD, Firgang SI, Semenov RV, Malyshev OR, Raihstat MM, Fuchs F (2011) A stielow and m lantow, polyalkoxybenzenes from plants. 5. parsley seed extract in synthesis of azapodophyllotoxins featuring strong tubulin destabilizing activity in the sea urchin embryo and cell culture assays. J Med Chem 54:7138–7149. doi:10.1021/jm200737s

    Article  CAS  PubMed  Google Scholar 

  52. Shi D-Q, Yang F, Ni S-N (2009) A facile synthesis of furo[3,4-e]pyrazolo[3,4-b]pyridine-5(7H)-one derivatives via three-component reaction in ionic liquid without any catalyst. J Heterocycl Chem 46:469–476. doi:10.1002/jhet.103

    Article  CAS  Google Scholar 

  53. Shi C-L, Shi D-Q, Kim SH, Huang Z-B, Ji S-J, Ji M (2008) A novel and efficient one-pot synthesis of furo[3\(\prime \),4\(\prime \):5,6]pyrido[2,3-c]pyrazole derivatives using organocatalysts. Tetrahedron 64:2425–2432. doi:10.1016/j.tet.2007.12.053

    Article  CAS  Google Scholar 

  54. Shi D-Q, Yao H (2009) Clean synthesis of furo[3,4-e]pyrazolo[3,4-b]pyridine-5-one derivatives in aqueous media. J Heterocycl Chem 46:1335–1338. doi:10.1002/jhet.224

    Article  CAS  Google Scholar 

  55. Shi F, Wang Q, Tu S, Zhou J, Jiang B, Li C, Zhou D, Shao Q, Cao L (2008) A green and efficient synthesis of furo[3,4-e]pyrazolo[3,4-b]-pyridine derivatives in water under microwave irradiation without catalyst. J Heterocycl Chem 45:1103–1108. doi:10.1002/jhet.5570450425

    Article  CAS  Google Scholar 

  56. Shirvan SA, Khazali F, Dezfuli SH, Borsalani A (2014) An efficient method for the one-pot, four-component benzaldehyde based synthesis of 3-methyl-1,4-diphenyl-7,8-dihydro-1H-furo[3,4-e]pyrazolo[3,4-b]pyridin-5(4H)-ones catalyzed by alum in environment-friendly media. Oriental J Chem 30:279–284

    Article  CAS  Google Scholar 

  57. Shi F, Zhou D, Tu S, Shao Q, Li C, Cao L (2008) An efficient microwave-assisted synthesis furo[3,4-b]-[4,7]phenanthroline and indeno[2,1-b][4,7]phenanthroline derivatives in water. J Heterocycl Chem 45:1065–1070. doi:10.1002/jhet.5570450418

    Article  CAS  Google Scholar 

  58. Kamal A, Reddy TS, Polepalli S, Paidakula S, Srinivasulu V, Reddy VG, Jain N, Shankaraiah N (2014) Synthesis and biological evaluation of 4-aza-2,3-dihydropyridophenanthrolines as tubulin polymerization inhibitors. Bioorg Med Chem Lett 24:3356–3360. doi:10.1016/j.bmcl.2014.05.096

    Article  CAS  PubMed  Google Scholar 

  59. Kamal A, Tamboli JR, Nayak VL, Adil SF, Vishnuvardhan MVPS, Ramakrishna S (2014) Synthesis of a terphenyl substituted 4-aza-2,3-didehydropodophyllotoxin analogues as inhibitors of tubulin polymerization and apoptosis inducers. Bioorg Med Chem 22:2714–2723. doi:10.1016/j.bmc.2014.03.021

    Article  CAS  PubMed  Google Scholar 

  60. Kamal A, Suresh P, Mallareddy A, Kumar BA, Reddy PV, Raju P, Tamboli JR, Shaik TB, Jain N, Kalivendi SV (2011) Synthesis of a new 4-aza-2,3-didehydropodophyllotoxin analogues as potent cytotoxic and antimitotic agents. Bioorg Med Chem 19:2349–2358. doi:10.1016/j.bmc.2011.02.020

    Article  CAS  PubMed  Google Scholar 

  61. Wang X-H, Hao W-J, Tu S-J, Zhang X-H, Cao X-D, Yan S, Wu S-S, Han Z-G, Shi F (2009) Microwave-assisted multicomponent reaction for the synthesis of new and significative bisfunctional compounds containing two furo[3,4-b]quinoline and acridinedione skeletons. J Heterocyl Chem 46:742–747. doi:10.1002/jhet.143

    Article  CAS  Google Scholar 

  62. Phuong DT, Ma C-M, Hattori M, Jin JS (2009) Inhibitory effects of antrodins A–E from Antrodia cinnamomea and their metabolites on hepatitis C virus protease. Phytother Res 23:582–584. doi:10.1002/ptr.2657

    Article  CAS  Google Scholar 

  63. Wu M-D, Cheng M-J, Wang B-C, Yech Y-J, Lai J-T, Kuo Y-H, Yuan G-F, Chen I-S (2008) Maleimide and maleic anhydride derivatives from the mycelia of Antrodia cinnamomea and their nitric oxide inhibitory activities in macrophages. J Nat Prod 71:1258–1261. doi:10.1021/np070634k

    Article  CAS  PubMed  Google Scholar 

  64. Chien S-C, Chen M-L, Kuo H-T, Tsai Y-C, Lin B-F, Kuo Y-H (2008) Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata. J Agric Food Chem 56:7017–7022. doi:10.1021/jf801171x

    Article  CAS  PubMed  Google Scholar 

  65. Wen C-L, Chang C-C, Huang S-S, Kuo C-L, Hsu S-L, Deng J-S, Huang G-J (2011) Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. J Ethnopharmacol 137:575–584. doi:10.1016/j.jep.2011.06.009

    Article  PubMed  Google Scholar 

  66. Boukouvalas J, Albert V, Loach RP, Lafleur-Lambert R (2012) Unified route to asymmetrically substituted butenolide, maleic anhydride, and maleimide constituents of Antrodia camphorata. Tetrahedron 68:9592–9597. doi:10.1016/j.tet.2012.09.064

  67. Ortega MJ, Zubıìa E, Ocaña JM, Naranjo S, Salvá J (2000) New Rubrolides from the Ascidian Synoicum blochmanni. Tetrahedron 56:3963–3967. doi:10.1016/S0040-4020(00)00328-8

    Article  CAS  Google Scholar 

  68. Manzanaro S, Salva J, de la Fuente JA (2006) Phenolic marine natural products as aldose reductase inhibitors. J Nat Prod 69:1485–1487. doi:10.1021/np300580z

    Article  CAS  PubMed  Google Scholar 

  69. Boukouvalas J, McCann LC (2010) Synthesis of the human aldose reductase inhibitor rubrolide L. Tetrahedron Lett 51:4636–4639. doi:10.1016/j.tetlet.2010.06.129

    Article  CAS  Google Scholar 

  70. Kuang H, Yang B, Xia Y, Feng W (2008) Chemical constituents from the flower of datura metel L. Arch Pharm Res 31:1094–1097. doi:10.1007/s12272-001-1274-6

    Article  CAS  PubMed  Google Scholar 

  71. Kim KH, Noh HJ, Choi SC, Park KM, Seok S-J, Lee KR (2010) Lactarane sesquiterpenoids from Lactarius subvellereus and their cytotoxicity. Bioorg Med Chem Lett 20:5385–5388. doi:10.1016/j.bmcl.2010.07.119

    Article  CAS  PubMed  Google Scholar 

  72. Hosoe T, Gloer JB, Wicklow DT, Raja HA, Shearer CA (2010) New nonadride analogues from a freshwater isolate of an undescribed fungus belonging to the order pleosporales. Heterocycles 81:2123–2130. doi:10.3987/COM-10-12009

    Article  CAS  Google Scholar 

  73. Lin Y-C, Fazary AE, Shen Y-C (2010) Cespitulins A-D, novel diterpenoids from Taiwanese Cespitularia taeniata. Tetrahedron Lett 51:6654–6657. doi:10.1016/j.tetlet.2010.10.057

    Article  CAS  Google Scholar 

  74. Fujimoto H, Asai T, Kim Y-P, Ishibashi M (2006) Nine constituents including six xanthone-related compounds isolated from two ascomycetes, gelasinospora santi-florii and Emericella quadrilineata, found in a screening study focused on immunomodulatory activity. Chem Pharm Bull 54:550–553. doi:10.1248/cpb.54.550

    Article  CAS  PubMed  Google Scholar 

  75. Xu Y-J, Tang C-P, Tan M-J, Ke C-Q, Wu T, Ye Y (2010) Sesquiterpenoids and diterpenoids from chloranthus anhuiensis. Chem Biodivers 7:151–157. doi:10.1002/cbdv.200800300

    Article  CAS  PubMed  Google Scholar 

  76. Boukouvalas J, McCann LC (2011) Concise, regiocontrolled synthesis of yangjinhualine A. Tetrahedron Lett 52:1202–1204. doi:10.1016/j.tetlet.2011.01.036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moaz M. Abdou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, M.M., El-Saeed, R.A., Elattar, K.M. et al. Advancements in tetronic acid chemistry. Part 2: Use as a simple precursor to privileged heterocyclic motifs. Mol Divers 20, 989–999 (2016). https://doi.org/10.1007/s11030-016-9683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9683-x

Keywords

Navigation