Skip to main content
Log in

Cerium oxide-catalyzed multicomponent condensation approach to spirooxindoles in water

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient and facile green synthesis of spirooxindole derivatives bearing pyrano[2,3-c]pyrazole moiety has been achieved via a \(\mathrm{CeO}_{2}\)-NPs catalyzed four-component reaction in water. The protocol offers an environmentally benign and effective approach to highly functionalized and biologically interesting spiro[indoline-3,4\(^\prime \)-pyrano[2,3-c]pyrazole] derivatives. The synthesized compounds exhibit potent antioxidant and antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Galliford CV, Scheidt KA (2007) Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew Chem Int Ed 46:8748–8758. doi:10.1002/anie.200701342

    Article  CAS  Google Scholar 

  2. Cheng D, Ishihara Y, Tan B, Barbas CF III (2014) Organocatalytic asymmetric assembly reactions: synthesis of spirooxindoles via organocascade strategies. ACS Catal 4:743–762. doi:10.1021/cs401172r

    Article  CAS  Google Scholar 

  3. Xu J, Shao LD, Li D, Deng X, Liu YC, Zhao QS, Xia C (2014) Construction of tetracyclic 3-spirooxindole through cross dehydrogenation of pyridinium: applications in facile synthesis of (\(\pm )\)-Corynoxine and (\(\pm )\)-Corynoxine B. J Am Chem Soc 136:17962–17965. doi:10.1021/ja5121343

    Article  CAS  PubMed  Google Scholar 

  4. Santos MMM (2014) Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron 70:9735–9757. doi:10.1016/j.tet.2014.08.005

    Article  CAS  Google Scholar 

  5. Marti C, Carreira EM (2003) Construction of spiro[pyrrolidine-3,3-oxindoles] recent applications to the synthesis of oxindole alkaloids. Eur J Org Chem 2003:2209–2219. doi:10.1002/ejoc.200300050

    Article  Google Scholar 

  6. Bhaskar G, Arun Y, Balachandran C, Saikumar C, Perumal PT (2012) Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur J Med Chem 51:79–91. doi:10.1016/j.ejmech.2012.02.024

    Article  CAS  PubMed  Google Scholar 

  7. Wu G, Ouyang L, Liu J, Zeng S, Huang W, Han B, Wu F, He G, Xiang M (2013) Synthesis of novel spirooxindolo-pyrrolidines, pyrrolizidines, and pyrrolothiazoles via a regioselective three-component \([3+2]\) cycloaddition and their preliminary antimicrobial evaluation. Mol Divers 17:271–283. doi:10.1007/s11030-013-9432-3

    Article  CAS  PubMed  Google Scholar 

  8. Thangamani A (2010) Regiospecific synthesis and biological evaluation of spirooxindolopyrrolizidines via \([3+2]\) cycloaddition of azomethine ylide. Eur J Med Chem 45:6120–6126. doi:10.1016/j.ejmech.2010.09.051

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y, Liu J, Sun T, Zhang X, Yao J, Kai M, Jiang X, Wang R (2014) Anti-cancer small molecule JP-8g exhibits potent in vivo anti-inflammatory activity. Sci Rep 4:4372/1–4372/5. doi:10.1038/srep04372

    CAS  Google Scholar 

  10. Rottmann M, McNamara C, Yeung BKS, Lee MCS, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175–1180. doi:10.1126/science.1193225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rajesh SM, Permual S, Menendez JC, Yogeeswari P, Sriram D (2011) Antimycobacterial activity of spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole hybrids obtained by a three-component regio- and stereoselective 1,3-dipolar cycloaddition. Med Chem Commun 2:626–630. doi:10.1039/c0md00239a

    Article  CAS  Google Scholar 

  12. Haddad S, Boudriga S, Akhaja TN, Raval JP, Porzio F, Soldera A, Askri M, Knorr M, Rousselin Y, Kubicki MM, Rajani D (2015) A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: in vitro antibacterial, antifungal, antimalarial and antitubercular studies. New J Chem 39:520–528. doi:10.1039/c4nj01008f

    Article  CAS  Google Scholar 

  13. Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, Shargary S, Bernard D, Li X, Zhao T, Zou P, Sun D, Wang S (2013) A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 56:5553–5561. doi:10.1021/jm4005708

    Article  CAS  PubMed  Google Scholar 

  14. Zhou R, Wu Q, Guo M, Huang W, He X, Yang L, Peng F, He G, Han B (2015) Organocatalytic cascade reaction for the asymmetric synthesis of novel chroman-fused spirooxindoles that potently inhibit cancer cell proliferation. Chem Commun 51:13113–13116. doi:10.1039/c5cc04968g

    Article  CAS  Google Scholar 

  15. Zhao Y, Liu L, Sun W, Lu J, McEachern D, Li X, Yu S, Bernard D, Ochsenbein P, Ferey V, Carry JC, Deschamps JR, Sun D, Wang S (2013) Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J Am Chem Soc 135:7223–7234. doi:10.1021/ja3125417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu S, Qin D, Shangary S, Chen J, Wang G, Ding K, McEachern D, Qiu S, Nikolovska-Coleska Z, Miller R, Kang S, Yang D, Wang S (2009) Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 52:7970–7973. doi:10.1021/jm901400z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci 105:3933–3938. doi:10.1073/pnas.0708917105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh GS, Desta ZY (2012) Isatins as privileged molecules in design and synthesis of spiro fused cyclic frameworks. Chem Rev 112:6104–6155. doi:10.1021/cr300135y

    Article  CAS  PubMed  Google Scholar 

  19. Hong L, Wang R (2013) Recent advances in asymmetric organocatalytic construction of 3,3\(^\prime \)-spirocyclic oxindoles. Adv Synth Catal 355:1023–1052. doi:10.1002/adsc.201200808

  20. Dalpozzo R, Bartoli G, Bencivenni G (2012) Recent advances in organocatalytic methods for the synthesis of disubstituted 2-and 3-indolinones. Chem Soc Rev 41:7247–7290. doi:10.1039/C2CS35100E

    Article  CAS  PubMed  Google Scholar 

  21. Kang SR, Lee YR (2013) Efficient one-pot synthesis of spirooxindole derivatives bearing hexahydroquinolines using multicomponent reactions catalyzed by ethylenediamine diacetate. Synthesis 45:2593–2599. doi:10.1055/s-0033-1338506

    Article  CAS  Google Scholar 

  22. Narasimhulu M, Lee YR (2011) Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2,3-dihydroquinazolin-4(1\(H)\)-ones and their spirooxindole derivatives. Tetrahedron 67:9627–9634. doi:10.1016/j.tet.2011.08.018

    Article  CAS  Google Scholar 

  23. Park JH, Lee YR, Kim SH (2013) A novel synthesis of diverse 2-amino-5-hydroxy-4\(H\)-chromene derivatives with a spirooxindole nucleus by \(Ca(OH)_{2}\)-mediated three-component reactions of substituted resorcinols with isatins and malononitrile. Tetrahedron 69:9682–9689. doi:10.1016/j.tet.2013.09.021

    Article  CAS  Google Scholar 

  24. Shanthi G, Subbulakshmi G, Perumal PT (2007) A new \(\text{ InCl }_{3}\)-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron 63:2057–2063. doi:10.1016/j.tet.2006.12.042

    Article  CAS  Google Scholar 

  25. Dandia A, Parewa V, Jain AK, Rathore KS (2011) Step-economic, efficient, ZnS nanoparticle-catalyzed synthesis of spirooxindole derivatives in aqueous medium via Knoevenagel condensation followed by Michael addition. Green Chem 13:2135–2145. doi:10.1039/c1gc15244k

    Article  CAS  Google Scholar 

  26. Satasia SP, Kalaria PN, Avalani JR, Raval DK (2014) An efficient approach for the synthesis of spirooxindole derivatives catalyzed by novel sulfated choline based heteropolyanion at room temperature. Tetrahedron 70:5763–5767. doi:10.1016/j.tet.2014.06.050

    Article  CAS  Google Scholar 

  27. Dandia A, Jain AK, Bhati DS (2011) NaCl as a novel and green catalyst for the synthesis of biodynamic spiro heterocycles in water under sonication. Synth commun 41:2905–2919. doi:10.1080/00397911.2010.515365

    Article  CAS  Google Scholar 

  28. Kidwai M, Jain A, Nemaysh V, Kumar R, Luthra PM (2013) Efficient entry to diversely functionalized spirooxindoles from isatin and their biological activity. Med Chem Res 22:2717–2723. doi:10.1007/s00044-012-0249-x

    Article  CAS  Google Scholar 

  29. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074. doi:10.1021/cr940089p

    Article  CAS  PubMed  Google Scholar 

  30. Rothenberg G, Downie AP, Raston CL, Scott JL (2001) Understanding solid/solid organic reactions. J Am Chem Soc 123:8701–8708. doi:10.1021/ja0034388

    Article  CAS  PubMed  Google Scholar 

  31. Cave GWV, Raston CL, Scott JL (2001) Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem Commun 21:2159–2169. doi:10.1039/b106677n

    Article  Google Scholar 

  32. Kaupp G (2003) Solid-state molecular syntheses: complete reactions without auxiliaries based on the new solid-state mechanism. CrystEngComm 5:117–133. doi:10.1039/b303432a

    Article  CAS  Google Scholar 

  33. Schneider F, Szuppa T, Stolle A, Ondruschka B, Hopf H (2009) Energetic assessment of the Suzuki-Miyaura reaction: a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization. Green Chem 11:1894–1899. doi:10.1039/b915744c

    Article  CAS  Google Scholar 

  34. Choudhary G, Peddinti RK (2011) An expeditious, highly efficient, catalyst-free and solvent-free synthesis of nitroamines and nitrosulfides by Michael addition. Green Chem 13:276–282. doi:10.1039/c0gc00830c

    Article  CAS  Google Scholar 

  35. Cheng C, Jiang B, Tu SJ, Li G (2011) \([4+2+1]\) Domino cyclization in water for chemo- and regioselective synthesis of spiro-substituted benzo[\(b\)]furo[3,4-\(e\)][1,4]diazepine derivatives. Green Chem 13:2107–2115. doi:10.1039/c1gc15183e

    Article  CAS  Google Scholar 

  36. Feng J, Ablajan K, Sali A (2014) 4-Dimethylaminopyridine-catalyzed multi-component one-pot reactions for the convenient synthesis of spiro[indoline-3,4’-pyrano[2,3-\(c\)]pyrazole] derivatives. Tetrahedron 70:484–489. doi:10.1016/j.tet.2013.11.019

    Article  CAS  Google Scholar 

  37. Elinson MN, Dorofeev AS, Miloserdov FM, Nikishin GI (2009) Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: facile and convenient way to functionalized spirocyclic [indole-3,4-pyrano[2,3-\(c\)]pyrazole] system. Mol Divers 13:47–52. doi:10.1007/s11030-008-9100-1

    Article  CAS  PubMed  Google Scholar 

  38. Tayade YA, Padvi SA, Wagh YB, Dalal DS (2015) \(\beta \)-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-\(c\)] pyrazole and spiro[indoline-3,40-pyrano [2,3-\(c\)]pyrazole] in aqueous medium. Tetrahedron Lett 56:2441–2447. doi:10.1016/j.tetlet.2015.03.084

    Article  CAS  Google Scholar 

  39. Rai P, Srivastava M, Singh J, Singh J (2014) Chitosan/ionic liquid forms a renewable and reusable catalyst system used for the synthesis of highly functionalized spiro derivatives. New J Chem 38:3181–3186. doi:10.1039/c3nj01545a

    Article  CAS  Google Scholar 

  40. Zou Y, Hu Y, Liu H, Shi D (2012) Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4\(\prime \)-pyrano[2,3-\(c\)]pyrazole] derivatives. ACS Comb Sci 14:38–43. doi:10.1021/co200128k

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Xu X, Wang X, Yang W, Qian Q, Zhang M, Song L, Deng H, Shao M (2013) A facile and convenient way to functionalized trifluoromethylated spirocyclic[indole-3,4-pyrano[2,3-\(c\)]pyrazole] derivatives. Tetrahedron Lett 54:4451–4455. doi:10.1016/j.tetlet.2013.06.038

    Article  CAS  Google Scholar 

  42. Yu J, Zhou Y, Shen T, Mao W, Chen K, Song Q (2013) Novel and efficient one-pot synthesis of spiro[indoline-3,4\(^\prime \)-pyrano [2,3-c]pyrazole]derivatives catalysed by L-proline in aqueous medium. J Chem Res 37:365–368. doi:10.3184/174751913X13687116634925

  43. Bodhak C, Kundu A, Pramanik A (2015) \(\text{ ZrO }_{2}\) nanoparticles as a reusable solid dual acid-base catalyst for facile one-pot synthesis of multi-functionalized spirooxindole derivatives under solvent free condition. RSC Adv 5:85202–85213. doi:10.1039/C5RA16259A

    Article  CAS  Google Scholar 

  44. Tamura M, Tomishige K (2015) Redox properties of \(\text{ CeO }_{2}\) at low temperature: the direct synthesis of imines from alcohol and amine. Angew Chem Int Ed 54:864–867. doi:10.1002/anie.201409601

    Article  CAS  Google Scholar 

  45. Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K (2014) Organic carbonate synthesis from \(\text{ CO }_{2}\) and alcohol over \(\text{ CeO }_{2}\) with 2-cyanopyridine: scope and mechanistic studies. J Catal 318:95–107. doi:10.1016/j.jcat.2014.07.022

    Article  CAS  Google Scholar 

  46. Tamura M, Noro K, Honda M, Nakagawa Y, Tomishige K (2013) Highly efficient synthesis of cyclic ureas from \(\text{ CO }_{2}\) and diamines by a pure \(\text{ CeO }_{2}\) catalyst using a 2-propanol solvent. Green Chem 15:1567–1577. doi:10.1039/c3gc40495a

    Article  CAS  Google Scholar 

  47. Edayadulla N, Lee YR (2014) Cerium oxide nanoparticle-catalyzed three component protocol for the synthesis of highly substituted novel quinoxalin-2-amine derivatives and 3,4-dihydroquinoxalin-2-amines in water. RSC Adv 4:11459–11468. doi:10.1039/C4RA00717D

    Article  CAS  Google Scholar 

  48. Shelkar R, Sarode S, Nagarkar J (2013) Nano ceria catalyzed synthesis of substituted benzimidazole, benzothiazole, and benzoxazole in aqueous media. Tetrahedron Lett 54:6986–6990. doi:10.1016/j.tetlet.2013.09.092

    Article  CAS  Google Scholar 

  49. Akhlaghinia B, Ebrahimabadi H, Goharshadi EK, Samiee S, Rezazadeh SJ (2012) Ceria nanoparticles as an efficient catalyst for oxidation of benzylic CH bonds. Mol Catal A: Chem 357:67–72. doi:10.1016/j.molcata.2012.01.020

    Article  CAS  Google Scholar 

  50. Kim M, DiMaggio C, Yan S, Salley SO, Ng KYS (2011) The effect of support material on the transesterification activity of CaO-\(\text{ La }_{2}\text{ O }_{3}\) and CaO-\(\text{ CeO }_{2}\) supported catalysts. Green Chem 13:334–3390. doi:10.1039/c0gc00828a

    Article  CAS  Google Scholar 

  51. Honda M, Sonehara S, Yasuda H, Nakagawa Y, Tomishige K (2011) Heterogeneous \(\text{ CeO }_{2}\) catalyst for the one-pot synthesis of organic carbamates from amines, CO\(_{2}\) and alcohols. Green Chem 13:3406–3413. doi:10.1039/c1gc15646b

    Article  CAS  Google Scholar 

  52. Mitsudome T, Yamamoto M, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2015) One-step synthesis of core-gold/shell-ceria nanomaterial and its catalysis for highly selective semihydrogenation of alkynes. J Am Chem Soc 137:13452–13455. doi:10.1021/jacs.5b07521

    Article  CAS  PubMed  Google Scholar 

  53. Li HQ, Liu X, Zhang Q, Li SS, Liu YM, He HY, Cao Y (2015) Deoxygenative coupling of nitroarenes for the synthesis of aromatic azo compounds with CO using supported gold catalysts. Chem Commun 51:11217–11220. doi:10.1039/c5cc03134f

  54. Tamura M, Ito K, Nakagawa Y, Tomishige K (2015) \(\text{ CeO }_{2}\)-catalyzed direct synthesis of dialkylureas from \(\text{ CO }_{2}\) and amines. J Catal. doi:10.1016/j.jcat.2015.11.015

  55. Wang S, Zhao L, Wang W, Zhao Y, Zhang G, Ma X, Gong J (2013) Morphology control of ceria nanocrystals for catalytic conversion of \(\text{ CO }_{2}\) with methanol. Nanoscale 5:5582–5588. doi:10.1039/c3nr00831

  56. Tamura M, Honda M, Noro K, Nakagawa Y, Tomishige K (2013) Heterogeneous \(\text{ CeO }_{2}\)-catalyzed selective synthesis of cyclic carbamates from \(\text{ CO }_{2}\) and amino alcohols in acetonitrile solvent. J Catal 305:191–203. doi:10.1016/j.jcat.2013.05.013

    Article  CAS  Google Scholar 

  57. Tamura M, Tonomura T, Shimizu K, Satsuma A (2012) \(\text{ CeO }_{2}\)-catalyzed one-pot selective synthesis of N-alkyl amides from nitriles, amines and water. Appl Catal A 417–418:6–12. doi:10.1016/j.apcata.2011.12.004

    Article  Google Scholar 

  58. Woan K, Tsai YY, Sigmund W (2010) Synthesis and characterization of luminescent cerium oxide nanoparticles. Nanomedicine 5:233–242. doi:10.2217/nnm.09.106

    Article  CAS  PubMed  Google Scholar 

  59. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, New York

    Google Scholar 

  60. Faure B, Salazar-Alvarez G, Ahniyaz A, Villaluenga I, Berriozabal G, De Miguel YR, Bergström L (2013) Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Technol Adv Mater 14:023001. doi:10.1088/1468-6996/14/2/023001

    Article  Google Scholar 

  61. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered eeria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577. doi:10.1021/nl052024f

    Article  CAS  PubMed  Google Scholar 

  62. Shehata N, Meehan K, Leber D (2013) Study of fluorescence quenching in aluminum-doped ceria nanoparticles: potential molecular probe for dissolved oxygen. J Fluoresc 23:527–532. doi:10.1007/s10895-013-1186-x

    Article  CAS  PubMed  Google Scholar 

  63. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 23:70–76. doi:10.1006/abio.1996.0292

    Article  Google Scholar 

  64. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. doi:10.1016/0891-5849(95)02227-9

    Article  CAS  PubMed  Google Scholar 

  65. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2014 Yeungnam University Research Grant (215A555002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Rok Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 4889 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, R., Sharma, K., Lee, Y.R. et al. Cerium oxide-catalyzed multicomponent condensation approach to spirooxindoles in water. Mol Divers 20, 847–858 (2016). https://doi.org/10.1007/s11030-016-9670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9670-2

Keywords

Navigation