Skip to main content
Log in

Chemistry of withaferin-A: chemo, regio, and stereoselective synthesis of novel spiro-pyrrolizidino-oxindole adducts of withaferin-A via one-pot three-component [3+2] azomethine ylide cycloaddition and their cytotoxicity evaluation

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Withaferin-A (WA) has attracted the attention of chemists as well as biologists due to its interesting structure and various bio-activities. In light of the promising biological importance of WA as well as pyrrolidine-2-spiro-3\(^{\prime }\)-oxindole ring system, we became interested in the synthesis of a combined motif involving both the ring systems via the 1,3-dipolar cycloaddition of WA at \(\Delta ^{2}\)-bond of the \(\upalpha \),\(\upbeta \)-unsaturated carbonyl system. We now report a facile, atom-economic synthesis of novel spiro-pyrrolizidino-oxindole adducts of withaferin-A (10 compounds) via the intermolecular cycloaddition of azomethine ylides generated in situ from proline and isatins/acenaphthoquinone. The reaction is highly chemo, regio, and stereoselective affording the cis-fused products with \(\upbeta \)-orienting hydrogen. The structures were determined by 1D/2D NMR spectroscopic data analysis and unequivocally confirmed by X-ray crystallographic analysis in some cases. Bioevaluation of the compounds against six cancer lines (e.g., CHO, HepG2, HeLa, HEK 293, MDCK-II, and Caco-2) identified 4 promising potential anticancer compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Lavie D, Glotter E, Shvo Y (1965) Constituents of Withania somnifera Dun: III. The side chain of withaferin A. J Org Chem 30:1774–1778. doi:10.1021/jo01017a015

  2. Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A, Zhang L, Hanson AD, Conner BP, Rougas J, Pribluda VS (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122

    Article  CAS  PubMed  Google Scholar 

  3. Yokota Y, Bargagna-Mohan P, Ravindranath PP, Kim KB, Mohan R (2006) Development of withaferin A analogs as probes of angiogenesis. Bioorg Med Chem Lett 16:2603–2607. doi:10.1016/j.bmcl.2006.02.039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kumar PS, Shilpa P, Salimath BP (2009) Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor. Curr Trends Biotechnol Pharm 3:138–148

    Google Scholar 

  5. Jilani K, Lupescu A, Zbidah M, Shaik N, Lang F (2013) Withaferin A-stimulated \(\text{ Ca }^{2+}\) entry, ceramide formation and suicidal death of erythrocytes. Toxicol Vitro 27:52–58. doi:10.1016/j.tiv.2012.09.004

    Article  CAS  Google Scholar 

  6. Wanjari P, Jayadeepa RM (2012) A novel in-silico drug designing approach for identification of natural compounds for treatment of hypothyroid. Int Proc Chem Biol Environ Eng 31:12–16

    CAS  Google Scholar 

  7. Khedgikar V, Kushwaha P, Gautam J, Verma A, Changkija B, Kumar A, Sharma S, Nagar GK, Singh D, Trivedi PK, Sangwan NS, Mishra PR, Trivedi R (2013) Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis 4:e778. doi:10.1038/cddis.2013.294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Antony ML, Lee J, Hahm ER, Kim SH, Marcus AL, Kumari V, Ji X, Yang Z, Vowell CL, Wipf P, Uechi GT, Yates NA, Romero G, Sarkar SN, Singh SV (2014) Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of \(\upbeta \)-tubulin. J Bio Chem 289:1852–1865. doi:10.1074/jbc.M113.496844

    Article  CAS  Google Scholar 

  9. Srinivasan S, Ranga RS, Burikhanov R, Han SS, Chendil D (2007) Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 67:246–253. doi:10.1158/0008-5472.CAN-06-2430

    Article  CAS  PubMed  Google Scholar 

  10. Oh JH, Lee TJ, Kim SH, Choi YH, Lee SH, Lee JM, Kim YH, Park JW, Kwon TK (2008) Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation. Apoptosis 13:1494–1504. doi:10.1007/s10495-008-0273-y

    Article  CAS  PubMed  Google Scholar 

  11. Mayola E, Gallerne C, Esposti DD, Martel C, Pervaiz S, Larue L, Debuire B, Lemoine A, Brenner C, Lemaire C (2011) Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 16:1014–1027. doi:10.1007/s10495-011-0625-x

    Article  CAS  PubMed  Google Scholar 

  12. Munagala R, Kausar H, Munjal C, Gupta CR (2011) Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 32:1697–1705. doi:10.1093/carcin/bgr192

    Article  CAS  PubMed  Google Scholar 

  13. Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C (2010) Notch-1 inhibition by withaferin-A: a therapeutic target against colon carcinogenesis. Mol Canc Therapeut 9:202–210. doi:10.1158/1535-7163.MCT-09-0771

    Article  CAS  Google Scholar 

  14. Kaileh M, Berghe VW, Heyerick A, Horion J, Piette J, Libert C, Keukeleire DD, Essawi T, Haegeman G (2007) Withaferin A strongly elicits I\(\upkappa \)B kinase \(\upbeta \) hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Bio Chem 282:4253–4264. doi:10.1074/jbc.M606728200

    Article  CAS  Google Scholar 

  15. Khan ZA, Ghosh AR (2010) Possible nitric oxide modulation in protective effects of Withaferin A against stress induced neurobehavioural changes. J Med Plants Res 4:490–495. doi:10.5897/JMPR09.079

    CAS  Google Scholar 

  16. Khan ZA, Ghosh AR (2010) Involvement of nNOS in the antidepressant-like effect of Withaferin-A in rats. J Pharm Biomed Sci 7:1–2

    Google Scholar 

  17. Gupta SK, Mohanty I, Talwar KK, Dinda A, Joshi S, Bansal P, Saxena A, Arya DS (2004) Cardioprotection from ischemia and reperfusion injury by Withania somnifera: a hemodynamic, biochemical and histopathological assessment. Mol Cell Biochem 260:39–47. doi:10.1023/B:MCBI.0000026051.16803.03

    Article  PubMed  Google Scholar 

  18. Agarwal R, Diwanay S, Patki P, Patwardhan B (1999) Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation. J Ethnopharmacol 67:27–35. doi:10.1016/S0378-8741(99)00065-3

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Wang Y, Cheryan VT, Wu W, Cui CQ, Polin LA, Pass HI, Dou QP, Rishi AK, Wali A (2012) Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo. PLoS One 7:e41214. doi:10.1371/journal.pone.0041214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Min KJ, Choi K, Kwon TK (2011) Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells. Int Immunopharmacol 11:1137–1142. doi:10.1016/j.intimp.2011.02.029

    Article  CAS  PubMed  Google Scholar 

  21. Devi PU, Kamath R (2003) Radiosensitizing effect of withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. J Radiat Res 44:1–6

    Article  CAS  Google Scholar 

  22. Amslinger S (2010) The tunable functionality of \(\upalpha \),\(\upbeta \)-unsaturated carbonyl compounds enables their differential application in biological systems. ChemMedChem 5:351–356. doi:10.1002/cmdc.200900499

    Article  CAS  PubMed  Google Scholar 

  23. Fuska J, Prousek J, Rosazza J, Budesinsky M (1982) Microbial transformations of natural antitumor agents, 23. Conversion of withaferin-A to 12\(\upbeta \)- and 15\(\upbeta \)- hydroxy derivatives of withaferin-A. Steroids 40:157–169. doi:10.1016/0039-128X(82)90030-7

    Article  CAS  PubMed  Google Scholar 

  24. Rahman AU, Farooq A, Anjum S, Choudhary MI (1999) Microbial transformation of cytotoxic natural products. Curr Org Chem 3:309–326

    Google Scholar 

  25. Rosazza JP, Nicholas AW, Gustafson ME (1978) Microbial transformations of natural antitumor agents. 7. 14-alpha-hydroxylation of withaferin-a by cunninghamella elegans (NRRL 1393). Steroids 31:671–679. doi:10.1016/S0039-128X(78)80007-5

    Article  CAS  PubMed  Google Scholar 

  26. Motiwala HF, Bazzill J, Samadi A, Zhang H, Timmermann BN, Cohen MS, Aube J (2013) Synthesis and cytotoxicity of semisynthetic withalongolide a analogues. ACS Med Chem Lett 4:1069–1073. doi:10.1021/ml400267q

    Article  PubMed Central  CAS  Google Scholar 

  27. Joshi P, Misra L, Siddique AA, Srivastava M, Kumar S, Darkor MP (2014) Epoxide group relationship with cytotoxicity in withanolide derivatives from Withania somnifera. Steroids 79:19–27. doi:10.1016/j.steroids.2013.10.008

  28. Misra L, Lal P, Chaurasia ND, Sangwan RS, Sinha S, Tuli R (2008) Selective reactivity of 2-mercaptoethanol with 5\(\upbeta \),6\(\upbeta \)-epoxide in steroids from Withania somnifera. Steroids 73:245–251. doi:10.1016/j.steroids.2007.10.006

  29. Yousuf SK, Majeed R, Ahmad M, Sangwan P, Purnima B, Saxena AK, Suri KA, Mukherjee D, Taneja SC (2011) Ring A structural modified derivatives of withaferin A and the evaluation of their cytotoxic potential. Steroids 76:1213–1222. doi:10.1016/j.steroids.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  30. Nicholas AW, Rosazza JP (1976) Reactions of withaferin-A with model biological nucleophiles. Biorg Chem 5:367–372. doi:10.1016/0045-2068(76)90021-3

  31. Jossang A, Jossang P, Hadi HA, Sevenet T, Bodo B (1991) Horsfiline, an oxindole alkaloid from Horsfieldia superb. J Org Chem 56:6527–6530. doi:10.1021/jo00023a016

  32. Sebahar PR, Williams RM (2000) The asymmetric total synthesis of (+)- and (\(-\))-spirotryprostatin B. J Am Chem Soc 122:5666–5667. doi:10.1021/ja001133n

    Article  CAS  Google Scholar 

  33. Meyers C, Carreira EM (2003) Total synthesis of (\(-\))-spirotryprostatin B. Angew Chem Int Ed 42:694–696. doi:10.1002/anie.200390192

  34. Hilton ST, Ho TCT, Pljevaljcic G, Jones K (2000) A new route to spirooxindoles. Org Lett 2:2639–2641. doi:10.1021/ol0061642

    Article  CAS  PubMed  Google Scholar 

  35. Amornraksa K, Grigg R, Gunaratna HQN, Kemp J, Sridharan V (1987) X = Y\(-\)ZH Systems as potential 1,3-dipoles: part 8. Pyrrolidines and \(\Delta ^{5}\)-pyrrolines (3,7-diazabicyclo[3.3.0]octenes) from the reaction of imines of \(\upalpha \)-amino acids and their esters with cyclic dipolarophiles. Mechanism of racemisation of \(\upalpha \)-amino acids and their esters in the presence of aldehydes. J Chem Soc Perkin Trans 1:2285–2296. doi:10.1039/P19870002285

    Article  Google Scholar 

  36. Grigg R, Thianpatanaqul S (1984) Decarboxylative transamination. Mechanism and applications to the synthesis of heterocyclic compounds. J Chem Soc Chem Commun 180–181. doi:10.1039/C39840000180

  37. Misra L, Lal P, Sangwan RS, Sangwan NS, Uniyal GC, Tuli R (2005) Unusually sulphated and oxygenated steroids from Withania somnifera. Phytochemistry 66:2702–2707. doi:10.1016/j.phytochem.2005.10.001

  38. Talupula BK (2011) Cytotoxicity of PBN spin trap on A204 cells. J Adv Pharm Res 2:9–17

    Article  CAS  Google Scholar 

  39. Al-Qubaisi M, Rozita R, Yeap SK, Omar AR, Ali AM, Alitheen NB (2011) Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 Cells. Molecules 16:2944–2959. doi:10.3390/molecules16042944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Director, IICB for laboratory facilities. This work received financial assistance from the Council of Scientific and Industrial Research Government of India. B.Y., S.K., N. S., A.H., and N.B.M. are recipients of Research Fellowships and Emeritus Scientist grant from CSIR. Our thanks are due to Dr. B. Achari (Ex-emeritus Scientist, CSIR) for helpful suggestions and Dr. R. Natarajan (Senior Scientist) and Dr. Prakas R. Maulik (Emeritus Scientist, CSIR) and Mr. Sandip Kundu of IICB for helping in X-ray structure solution and Mr. E. Padmanaban for recording NMR spectrometric data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhijit Hazra or Nirup B. Mondal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharitkar, Y.P., Kanhar, S., Suneel, N. et al. Chemistry of withaferin-A: chemo, regio, and stereoselective synthesis of novel spiro-pyrrolizidino-oxindole adducts of withaferin-A via one-pot three-component [3+2] azomethine ylide cycloaddition and their cytotoxicity evaluation. Mol Divers 19, 251–261 (2015). https://doi.org/10.1007/s11030-015-9574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9574-6

Keywords

Navigation