Skip to main content
Log in

Efficient one-pot protocol for diverse pyrazolylphosphonates by multi-component reactions: their antioxidant and antibacterial activities

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Abstract

Efficient one-pot three-component reactions of pyrazolones with arylaldehydes and triethyl phosphite were carried out in the presence of ethylenediammonium diacetate as catalyst to synthesize biologically interesting pyrazolylphosphonate derivatives. This methodology offers several significant advantages such as environmentally benign character, the use of a mild catalyst, high yields, and ease of handling. The synthesized compounds were screened for their antioxidant and antibacterial activities. The result showed that compound 4d \((\hbox {IC}_{50 }= 3.40\,\upmu \hbox {M})\) exhibited a strong free radical scavenger toward DPPH free radicals compared with standard BHT \((\hbox {IC}_{50 } = 29.23\,\upmu \hbox {M})\). In addition, compounds 4e and 4p showed potent antibacterial activities against Gram-negative bacteria of E. coli and compound 4o exhibited a potent activity against Gram-positive bacteria of S. aureus compared with standard Ampicillin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Moonen K, Lauryn I, Stevens CV (2004) Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chem Rev 104:6177–6215. doi:10.1021/cr030451c

    Article  CAS  PubMed  Google Scholar 

  2. Schug KA, Lindner W (2005) Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem Rev 105:67–113. doi:10.1021/cr040603j

    Article  CAS  PubMed  Google Scholar 

  3. Allen MC, Fuhrer W, Tuck B, Wade R, Wood JM (1989) Renin inhibitors. Synthesis of transition-state analogue inhibitors containing phosphorus acid derivatives at the scissile bond. J Med Chem 32:1652–1661. doi:10.1021/jm00127a041

    Article  CAS  PubMed  Google Scholar 

  4. Patel DV, Rielly-Gauvin K, Ryono DE (1990) Preparation of peptidic \(\upalpha \)-hydroxy phosphonates a new class of transition state analog renin inhibitors. Tetrahedron Lett 31:5587–5590. doi:10.1016/S0040-4039(00)97903-6

    Article  CAS  Google Scholar 

  5. Stowasser B, Budt K-H, Jian-Qi L, Peyman A, Ruppert D (1992) New hybrid transition state analog inhibitors of HIV protease with peripheric C2-symmetry. Tetrahedron Lett 33:6625–6628. doi:10.1016/S0040-4039(00)61002-X

    Article  CAS  Google Scholar 

  6. Kafarski P, Lejczak B (1991) Biological activity of aminophosphonic acids. Phosphorus Sulfur Silicon Relat Elem 63:193–215. doi:10.1080/10426509108029443

    Article  CAS  Google Scholar 

  7. Baylis EK, Campbell CD, Dingwall JG (1984) 1-Aminoalkylphosphonous acids. Part 1. Isosteres of the protein amino acids. J Chem Soc Perkin Trans 1:2845–2853. doi:10.1039/P19840002845

    Article  Google Scholar 

  8. Atherton FR, Hassall CH, Lambert RW (1986) Synthesis and structure–activity relationships of antibacterial phosphonopeptides incorporating (l-aminoethy1)phosphonic acid and (aminomethy1)phosphonic acid. J Med Chem 29:29–40. doi:10.1021/jm00151a005

    Article  CAS  PubMed  Google Scholar 

  9. Maryanoff BE, Reitz AB (1989) The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem Rev 89:863–927. doi:10.1021/cr00094a007

    Article  CAS  Google Scholar 

  10. Pudovik AN, Konovalova IV (1979) Addition reactions of esters of phosphorus(III) acids with unsaturated systems. Synthesis 2:81–96. doi:10.1055/s-1979-28566

    Article  Google Scholar 

  11. Simoni D, Invidiata FP, Manferdini M, Lampronti I, Rondanin R, Roberti M, Pollini GP (1998) Tetramethylguanidine (TMG)-catalyzed addition of dialkyl phosphites to \(\upalpha \),\(\upbeta \)-unsaturated carbonyl compounds, alkenenitriles, aldehydes, ketones and imines. Tetrahedron Lett 39:7615–7618. doi:10.1016/S0040-4039(98)01656-6

    Article  CAS  Google Scholar 

  12. Hosseini-Sarvari M, Etemad S (2008) Nanosized zinc oxide as a catalyst for the rapid and green synthesis of \(\upbeta \)-phosphono malonates. Tetrahedron 64:5519–5523. doi:10.1016/j.tet.2008.03.095

    Article  CAS  Google Scholar 

  13. Green K (1989) Trimethylaluminum promoted conjugate additions of dimethyl phosphite to \(\upalpha \),\(\upbeta \)-unsaturated esters and ketones. Tetrahedron Lett 30:4807–4810. doi:10.1016/S0040-4039(01)80513-X

    Article  CAS  Google Scholar 

  14. Hindersinn RR, Ludington RS (1965) The reaction of trialkyl phosphites with maleate esters. J Org Chem 30:4020–4025. doi:10.1021/jo01023a008

    Article  CAS  Google Scholar 

  15. Stockland RA Jr, Taylor RI, Thompson LE, Patel PB (2005) Microwave-assisted regioselective addition of P(O)-H bonds to alkenes without added solvent or catalyst. Org Lett 7:851–853. doi:10.1021/ol0474047

    Article  CAS  PubMed  Google Scholar 

  16. Shulyupin MO, Kazankova MA, Beletskaya IP (2002) Catalytic hydrophosphination of styrenes. Org Lett 4:761–763. doi:10.1021/ol017238s

    Article  CAS  PubMed  Google Scholar 

  17. Xu Q, Han L-B (2006) Palladium-catalyzed asymmetric hydrophosphorylation of norbornenes. Org Lett 8:2099–2101. doi:10.1021/ol060568y

    Article  CAS  PubMed  Google Scholar 

  18. Semenzin D, Etemad-Moghadam G, Albouy D, Diallo O, Koenig M (1997) Dual radical/polar pudovik reaction: application field of new activation methods. J Org Chem 62:2414–2422. doi:10.1021/jo9622441

    Article  CAS  PubMed  Google Scholar 

  19. Han L-B, Zhao C-Q (2005) Stereospecific addition of H-P bond to alkenes: a simple method for the preparation of (RP)-phenylphosphinates. J Org Chem 70:10121–10123. doi:10.1021/jo051582b

    Article  CAS  PubMed  Google Scholar 

  20. Kolla SR, Lee YR (2012) Efficient one-pot synthesis of \(\upbeta \)-phosphono malonates and 2-amino-4\(H\)-chromen-4-ylphosphonate derivatives by ethylenediamine diacetate-catalyzed three-component reactions. Tetrahedron 68:226–237. doi:10.1016/j.tet.2011.10.060

    Article  CAS  Google Scholar 

  21. Lin R, Chiu G, Yu Y, Connolly PJ, Li S, Lu Y, Adams M, Fuentes-Pesquera AR, Emanuel SL, Greenberger LM (2007) Design, synthesis, and evaluation of 3,4-disubstituted pyrazole analogues as anti-tumor CDK inhibitors. Bioorg Med Chem Lett 17:4557–4561. doi:10.1016/j.bmcl.2007.05.092

    Article  CAS  PubMed  Google Scholar 

  22. Farag AM, Mayhoub AS, Barakat SE, Bayomi AH (2008) Synthesis of new \(N\)-phenylpyrazole derivatives with potent antimicrobial activity. Bioorg Med Chem 16:4569–4578. doi:10.1016/j.bmc.2008.02.043

    Article  CAS  PubMed  Google Scholar 

  23. Farghaly AM, Soliman FSG, El Semary MMA, Rostom SAF (2001) Polysubstituted pyrazoles, part 4: synthesis, antimicrobial and antiinflammatory activity of some pyrazoles. Pharmazie 56:28–32

    CAS  PubMed  Google Scholar 

  24. Barcelo M, Ravina E, Masaguer CF, Dominuez E, Areias FM, Brea J, Loza MI (2007) Synthesis and binding affinity of new pyrazole and isoxazole derivatives as potential atypical antipsychotics. Bioorg Med Chem Lett 17:4873–4877. doi:10.1016/j.bmcl.2007.06.045

  25. Seki K, Isegawa J, Fukuda M, Ohki M (1984) Studies on hypolipidemic agents. II. Synthesis and pharmacological properties of alkylpyrazole derivatives. Chem Pharm Bull 32:1568–1577

    Article  CAS  PubMed  Google Scholar 

  26. Cottineau B, Toto P, Marot C, Pipaud A, Chenault J (2002) Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids. Bioorg Med Chem Lett 12:2105–2108. doi:10.1016/S0960-894X(02)00380-3

    Article  CAS  PubMed  Google Scholar 

  27. Larsen JS, Zahran MA, Pedersen EB, Nielsen C (1999) Synthesis of triazenopyrazole derivatives as potential inhibitors of HIV-1. Monatsh Chem 130:1167–1173. doi:10.1007/PL00010295

    CAS  Google Scholar 

  28. Elguero J, Goya P, Jagerovic N, Silva AMS (2002) Pyrazoles as drugs: facts and fantasies. Targets Heterocycl Syst 6:52–98

  29. Corte JR, Fang T, Pinto DJP, Han W, Hu Z, Jiang X-J, Li Y-L, Rendina AR, Luettgen JM, Wong PC, et al. (2006). Structure-activity relationships of anthranilamide-based factor Xa inhibitors containing piperidinone and pyridinone P4 moieties. In: 232nd ACS national meeting, San Francisco

  30. Rosinger C, Van Den Berg J, Geraats B (2006) Safened herbicides for Liliiflorae. PCT Int. Appl, WO 2006007982

  31. Natsume B, Kyomura N, Kikutake K, Fukuchi T (1991). Preparation of pyrazolecarboxamides as pesticides. Eur Pat Appl EP 462573

  32. Londershausen M (1996) Approaches to new parasiticides. Pestic Sci 48:269–292. doi:10.1002/(SICI)1096-9063(199612)

  33. Fahmy SM, Badran AH, Elnagdi MH (1980) Synthesis of some new azopyrazole dyes. J Chem Technol Biotechnol 30:390–395. doi:10.1002/jctb.503300147

    Article  CAS  Google Scholar 

  34. Fouque D, About-Jaudet E, Collignon N (1995) \(\upalpha \)-Pyrazolyl-alkylphosphonates. Part II. A simple and efficient synthesis of diethyl 1-(pyrazol-4-yl)-alkylphosphonates. Synth Commun 25:3443–3455. doi:10.1080/00397919508013868

  35. Khidre MD, Abou-Yousef HM, Refat M, Mahran H (2002) Organophosphorus chemistry 34. The reaction of alkyl phosphites and hexamethylphosphorus triamide with 1-phenyl-3-methyl-4-ylidene-5-pyrazolones. Phosphorus Sulfur Silicon Relat Elem 177:647–658. doi:10.1080/10426500210260

  36. Tolstikova LL, Bel’skikh AV, Shainyan BA (2011) Protonation and alkylation of organophosphorus compounds with trifluoromethanesulfonic acid derivatives. Russ J Gen Chem 81:377–383. doi:10.1134/S1070363211030054

    Article  Google Scholar 

  37. Boobalan R, Chen C (2013) Catalytic enantioselective hydrophosphonylation of aldehydes using the iron complex of a camphor-based tridentate schiff base [FeCl(SBAIB-d)]\(_{2}\). Adv Synth Catal 355:3443–3450. doi:10.1002/adsc.201300653

    Article  CAS  Google Scholar 

  38. Cefarelli G, D’Abrosca B, Fiorentino A, Izzo A, Mastellone C, Pacifico S, Piscopo V (2006) Free-radical-scavenging and antioxidant activities of secondary metabolites from reddened Cv. Annurca Apple Fruits. J Agric Food Chem 54:803–809. doi:10.1021/jf052632g

    Article  CAS  PubMed  Google Scholar 

  39. Campos MG, Webby RF, Markham KR, Mitchell KA, da Cunha AP (2003) Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J Agric Food Chem 51:742–745. doi:10.1021/jf0206466

    Article  CAS  PubMed  Google Scholar 

  40. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A1031189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Rok Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2810 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.R., Lee, Y.R. Efficient one-pot protocol for diverse pyrazolylphosphonates by multi-component reactions: their antioxidant and antibacterial activities. Mol Divers 19, 293–304 (2015). https://doi.org/10.1007/s11030-015-9568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9568-4

Keywords

Navigation