Skip to main content
Log in

Synthesis of a new class of Betti bases by the Mannich-type reaction: efficient, facile, solvent-free and one-pot protocol

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A variety of organocatalysts has been screened for the synthesis of arylaminonaphthols. It has been shown that (N,N-dimethylethanolamine) is a highly efficient organocatalyst for the direct synthesis of a novel class of arylaminonaphthols via three-component condensation of 2-naphthol, aldehydes, and arylamines under solvent-free conditions. Mild, one-pot, and green reaction conditions, relatively short reaction times and good yields make this protocol highly significant. 25 new compounds have been synthesized by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Knapp S (1995) Synthesis of complex nucleoside antibiotics. Chem Rev 95:1859–1876. doi:10.1021/cr00038a006

    Article  CAS  Google Scholar 

  2. Mannhold R, Kubinyi H (2006) Nucleic acid drugs. In: Dingermann T, Steinhilber D, Folkers G (eds) Molecular biology in medicinal chemistry. Wiley, Weinheim. doi:10.1002/3527602666

  3. Wang YF, Izawa T, Kobayashi S, Ohno M (1982) Stereocontrolled synthesis of (+)-negamycin from an acyclic homoallylamine by 1,3-asymmetric induction. J Am Chem Soc 104:6465–6466. doi:10.1021/ja00387a060

    Article  CAS  Google Scholar 

  4. Cardellicchio C, Capozzi MAM, Naso F (2010) The Betti base: the awakening of a sleeping beauty. Tetrahedron 21:507–517. doi:10.1016/j.tetasy.2010.03.020

    Article  CAS  Google Scholar 

  5. Elmendorf HG, Walls CD, Wolf C (2012) Compositions and methods for the treatment of giardiasis. US Patent 20,120,283,267

  6. Gerlach M, Maul C (2007) Substituted 1 and 2-naphthol Mannich bases. US Patent 7,202,242 B2

  7. Gyemant N, Engi H, Schelz Z, Szatmari I, Toth D, Fulop F, Molnar J, de Witte P (2010) In vitro and in vivo multidrug resistance reversal activity by a Betti-base derivative of tylosin. Br J Cancer 103:178–185. doi:10.1038/sj.bjc.6605716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Shen AY, Tsai CT, Chen CL (1999) Synthesis and cardiovascular evaluation of \(N\)-substituted 1-aminomethyl-2-naphthols. Eur J Med Chem 34:877–882. doi: 10.1016/S0223-5234(99)00204-4

    Article  CAS  Google Scholar 

  9. Szatmári I, Fülöp F (2013) Syntheses, transformations and applications of aminonaphthol derivatives prepared via modified Mannich reactions. Tetrahedron 69:1255–1278. doi:10.1016/j.tet.2012.11.055

    Article  Google Scholar 

  10. Salama TA (2013) Silicon-induced general, mild, and efficient one-pot, three-component synthesis of amidoalkyl naphthol libraries. Synlett 24:713–718. doi:10.1055/s-0032-1318392

    Article  CAS  Google Scholar 

  11. Safari J, Zarnegar Z (2013) A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols. J Mol Catal A 379:269–276. doi:10.1016/j.molcata.2013.08.028

    Article  CAS  Google Scholar 

  12. Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM (2013) MCM-41-SO\(_{3}\)H: a novel reusable nanocatalyst for synthesis of amidoalkyl naphthols under solvent-free conditions. Monatsh Chem 144:1191–1196. doi: 10.1007/s00706-013-0936-4

    Article  CAS  Google Scholar 

  13. Lei ZK, Xiao L, Lu XQ, Huang H, Liu CJ (2013) Graphite supported perchloric acid (HClO\(_{4}\)-C): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Molecules 18:1653–1659. doi: 10.3390/molecules18021653

    Article  CAS  PubMed  Google Scholar 

  14. Das VK, Borah M, Thakur AJ (2013) Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: A greener “Nanoparticle-Catalyzed Organic Synthesis Enhancement” approach. J Org Chem 78:3361–3366. doi:10.1021/jo302682k

    Article  CAS  PubMed  Google Scholar 

  15. Csutortoki R, Szatmari I, Fulop F (2013) Syntheses of amido-, carbamido- and carbamatoalkylnaphthols. Curr Org Synth 10:564–583

    CAS  Google Scholar 

  16. Mulla SA, Salama TA, Pathan MY, Inamdar SM, Chavan SS (2012) Solvent-free, highly efficient one-pot multi-component synthesis of 1-amido and 1-carbamato-alkyl naphthols/phenols catalyzed by ethylammonium nitrate as reusable ionic liquid under neat reaction condition at ambient temperature. Tetrahedron Lett 54:672–675. doi:10.1016/j.tetlet.2012.12.004

    Article  Google Scholar 

  17. Kotadia DA, Soni SS (2012) Silica gel supported-SO\(_{3}\)H functionalised benzimidazolium based ionic liquid as a mild and effective catalyst for rapid synthesis of 1-amidoalkyl naphthols. J Mol Catal A 353:44–49. doi: 10.1016/j.molcata.2011.11.003

    Article  Google Scholar 

  18. Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A, Khakyzadeh V (2011) Rapid synthesis of 1-amidoalkyl-2-naphthols over sulfonic acid functionalized imidazolium salts. Appl Catal A 400:70–81. doi:10.1016/j.apcata.2011.04.013

    Article  CAS  Google Scholar 

  19. Tamaddon F, Bistgani JM (2011) \([\text{ MeC(OH) }_{2}]^{+}\text{ ClO }_{4}^{-}\): a new efficient organocatalyst for the preparation of 1-amido-and 1-carbamato-alkyl naphthols. Synlett 2011:2947–2950. doi:10.1055/s-0031-1289906

  20. Mistry SR, Joshi RS, Maheria KC (2011) Zeolite H-BEA catalysed multicomponent reaction: one-pot synthesis of amidoalkyl naphthols—biologically active drug-like molecules. J Chem Sci 123:427–432. doi:10.1007/s12039-011-0095-2

    Article  CAS  Google Scholar 

  21. Shaterian HR, Yarahmadi H, Ghashang M (2008) Silica supported perchloric acid (HClO\(_{4}\)-SiO\(_{2})\): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Tetrahedron 64:1263–1269. doi: 10.1016/j.tet.2007.11.070

    Article  CAS  Google Scholar 

  22. Shaterian HR, Yarahmadi H, Ghashang M (2008) An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as “drug like” molecules for biological screening. Bioorg Med Chem Lett 18:788–792. doi:10.1016/j.tet.2007.11.070

    Article  CAS  PubMed  Google Scholar 

  23. Karmakar B, Banerji J (2011) A competent pot and atom-efficient synthesis of Betti bases over nanocrystalline MgO involving a modified Mannich type reaction. Tetrahedron Lett 52:4957–4960. doi:10.1016/j.tetlet.2011.07.075

    Article  CAS  Google Scholar 

  24. Periasamy M, Anwar S, Reddy MN (2009) Simple and convenient methods for synthesis, resolution and application of aminonaphthols. Indian J Chem B 48:1261–1273

    Google Scholar 

  25. Ghandi M, Olyaei A, Raoufmoghaddam S (2008) One-pot, three-component uncatalyzed quantitative synthesis of new aminonaphthols (Betti bases) in water. Synth Commun 38:4125–4138. doi:10.1080/00397910802279860

    Article  CAS  Google Scholar 

  26. Olyaei A, Raoufmoghaddam S, Sadeghpour M, Ebadzadeh B (2010) Convenient and efficient method for the synthesis of \(N\)-heteroaryl aminonaphthols under solvent-free conditions. Chin J Chem 28:825–832. doi: 10.1002/cjoc.201090153

    Article  CAS  Google Scholar 

  27. Hosseinian A, Shaterian HR (2012) \(\text{ NaHSO }_{4} \cdot \text{ H }_{2}\text{ O }\) catalyzed multicomponent synthesis of 1-(benzothiazolylamino) methyl2-naphthols under solvent-free conditions. Phosphorus Sulfur Silicon 187:1056–1063. doi: 10.1080/10426507.2012.664221

    Article  CAS  Google Scholar 

  28. Buckley BR, Neary SP (2010) Organocatalysis. Annu Rep Prog Chem Sect B Org Chem 106:120–135. doi:10.1039/B927086H

    Article  CAS  Google Scholar 

  29. Grondal C, Jeanty M, Enders D (2010) Organocatalytic cascade reactions as a new tool in total synthesis. Nat Chem 2:167–178. doi:10.1038/nchem.539

    Article  CAS  PubMed  Google Scholar 

  30. Marcelli T, van Maarseveen JH, Hiemstra H (2006) Cupreines and cupreidines: an emerging class of bifunctional cinchona organocatalysts. Angew Chem Int Ed 45:7496–7504. doi:10.1002/anie.200602318

  31. Liu G, Zhang S, Li H, Zhang T, Wang W (2011) Organocatalytic enantioselective Friedel–Crafts reactions of 1-naphthols with aldimines. Org Lett 13:828–831. doi:10.1021/ol102987n

    Article  CAS  PubMed  Google Scholar 

  32. Ramachary DB, Babul Reddy G (2007) A new organocatalyst for Friedel–Crafts alkylation of 2-naphthols with isatins: application of an organo-click strategy for the cascade synthesis of highly functionalized molecules. Tetrahedron Lett 48:7618–7623. doi:10.1016/j.tetlet.2007.08.129

    Article  CAS  Google Scholar 

  33. Shahrisa A, Safa KD, Esmati S (2014) Synthesis, spectroscopic and DFT studies of novel fluorescent dyes: 3-aminoimidazo[1,2-a]pyridines possessing 4-pyrone moieties. Spectrochim Acta A 117:614–621. doi:10.1016/j.saa.2013.09.056

    Article  CAS  Google Scholar 

  34. Shahrisa A, Esmati S, Miri R, Firuzi O, Edraki N, Nejati M (2013) Cytotoxic activity assessment, QSAR and docking study of novel bis-carboxamide derivatives of 4-pyrones synthesized by Ugi four-component reaction. Eur J Med Chem 66:388–399. doi:10.1016/j.ejmech.2013.05.049

  35. Shahrisa A, Esmati S (2013) Three novel sequential reactions for the facile synthesis of a library of bisheterocycles possessing the 3-aminoimidazo [1,2-a] pyridine core catalyzed by bismuth (III) chloride. Synlett 24:595–602. doi:10.1055/s-0032-1318221

    Article  CAS  Google Scholar 

  36. Shahrisa A, Miri R, Esmati S, Saraei M, Mehdipour AR, Sharifi M (2012) Synthesis and calcium channel antagonist activity of novel 1,4-dihydropyridine derivatives possessing 4-pyrone moieties. Med Chem Res 21:284–292. doi:10.1007/s00044-010-9534-8

  37. Shahrisa A, Esmati S, Nazari MG (2012) Boric acid as a mild and efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. J Chem Sci 124:927–931. doi:10.1007/s12039-012-0285-6

    Article  CAS  Google Scholar 

  38. Dindulkar SD, Puranik VG, Jeong YT (2012) Supported copper triflate as an efficient catalytic system for the synthesis of highly functionalized 2-naphthol Mannich bases under solvent free condition. Tetrahedron Lett 53:4376–4380. doi:10.1016/j.tetlet.2012.06.022

  39. Ganesan SS, Rajendran N, Sundarakumar SI, Ganesan A, Pemiah B (2013) \(\beta \)-Naphthol in glycerol: a versatile pair for efficient and convenient synthesis of aminonaphthols, naphtho-1,3-oxazines, and benzoxanthenes. Synthesis 45:1564–1568. doi: 10.1055/s-0033-1338430

    Article  CAS  Google Scholar 

  40. Saidi MR, Azizi N, Naimi-Jamal MR (2001) Lithium perchlorate assisted one-pot three-component aminoalkylation of electron-rich aromatic compounds. Tetrahedron Lett 42:8111–8113. doi:10.1016/S0040-4039(01)01732-4

    Article  CAS  Google Scholar 

  41. Katritzky AR, Abdel-Fattah AA, Tymoshenko DO, Belyakov SA, Ghiviriga I, Steel PJ (1999) Amino (hetero) arylmethylation of phenols with \(N\)-[\(\alpha \)-amino (hetero) arylmethyl] benzotriazoles. J Org Chem 64:6071–6075. doi:10.1021/jo9903609

  42. Kumar A, Gupta MK, Kumar M (2010) Non-ionic surfactant catalyzed synthesis of Betti base in water. Tetrahedron Lett 51:1582–1584. doi:10.1016/j.tetlet.2010.01.056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank research affairs of the University of Tabriz for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Shahrisa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 40553 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrisa, A., Teimuri-Mofrad, R. & Gholamhosseini-Nazari, M. Synthesis of a new class of Betti bases by the Mannich-type reaction: efficient, facile, solvent-free and one-pot protocol. Mol Divers 19, 87–101 (2015). https://doi.org/10.1007/s11030-014-9559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9559-x

Keywords

Navigation