Skip to main content
Log in

A review of syntheses of 1,5-disubstituted tetrazole derivatives

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This report provides a brief overview of the various representative literature procedures for the synthesis of 1,5-disubstituted tetrazoles (1,5-DSTs) and fused 1,5-disubstituted tetrazoles with more than 120 references. Most of the published methods for the synthesis of 1,5-DSTs include the use of nitriles, amides, thioamides, imidoyl chlorides, heterocumulenes, isocyanates, isothiocyanates, carbodiimides, ketenimines, ketones, amines, and alkenes as the starting materials. The transformation of 1- and 5-substituted tetrazoles into 1,5-DSTs is also covered in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. May BCH, Abell AD (2001) The synthesis and crystal structure of alpha-keto tetrazole-based dipeptide mimics. Tetrahedron Lett 42:5641–5644. doi:10.1016/S0040-4039(01)01101-7

    CAS  Google Scholar 

  2. Zabrocki J, Smith GD, Dunbar JB, Iijima JH, Marshall GR (1988) Conformational mimicry: 1. 1,5-Disubstituted tetrazole ring as a surrogate for the cis amide bond. J Am Chem Soc 110:5875–5880. doi:10.1021/ja00225a045

    CAS  Google Scholar 

  3. Zabrocki J, Dunbar JB, Marshall KW, Toth MV, Marshall GR (1992) Conformational mimicry. 3. Synthesis and incorporation of 1,5-disubstituted tetrazole dipeptide analogues into peptides with preservation of chiral integrity: bradykinin. J Org Chem 57:202–209. doi:10.1021/jo00027a038

    CAS  Google Scholar 

  4. Smith GD, Zabrocki J, Flak TA, Marshall GR (1991) Conformational mimicry. II. An obligatory cis amide bond in a small linear peptide. Int J Pept Protein Res 37:191–197

    CAS  PubMed  Google Scholar 

  5. Yu KL, Johnson RL (1987) Synthesis and chemical properties of tetrazole peptide analogues. J Org Chem 52:2051–2059. doi:10.1021/jo00386a029

    CAS  Google Scholar 

  6. Valle G, Crisma M, Yu KL, Toniolo C, Mishra RK, Johnson RL (1988) Synthesis and X-ray diffraction analysis of the tetrazole peptide analogue Pro–Leu\(\Psi [\text{ CN }_{4}]\)Gly–\(\text{ NH }_{2}\). Collect Czechoslov Chem Commun 53:2863–2876. doi: 10.1135/cccc19882863

    CAS  Google Scholar 

  7. Lebl M, Slaninova J, Johnson R (1989) Analogs of oxytocin containing a pseudopeptide Leu–Gly bond of cis and trans configuration. Int J Pept Protein Res 33:16–21. doi:10.1111/j.1399-3011.1989.tb00678.x

    CAS  PubMed  Google Scholar 

  8. Rajasekaran A, Thampi PP (2004) Synthesis and analgesic evaluation of some 5-[\({\upbeta }\)-(10-phenothiazinyl)ethyl]-1-(acyl)-1,2,3,4-tetrazoles. Eur J Med Chem 39:273–279. doi: 10.1016/j.ejmech.2003.11.016

    CAS  PubMed  Google Scholar 

  9. Habich D (1992) Synthesis of \(3^{\prime }\)-(5-amino-1,2,3,4-tetrazol-1-yl)-\(3^{\prime }\)-deoxythymidines. Synthesis 358–360. doi:10.1055/s-1992-26107

  10. Uchida M, Komatsu M, Morita S, Kanbe T, Yamasaky K, Nakagawa K (1989) Studies on gastric antiulcer active agents III: synthesis of 1-substituted 4-(5-tetrazolyl)thio-1-butanones and related compounds. Chem Pharm Bull 37:958–961. doi:10.1248/cpb.37.958

    CAS  PubMed  Google Scholar 

  11. Waisser K, Adamec J, Kunes J, Kaustova J (2004) Antimycobacterial 1-aryl-5-benzylsulfanyltetrazoles. Chem Pap 58:214–219

    CAS  Google Scholar 

  12. Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH (2001) Pentylenetetrazole-induced inhibition of recombinant \(\upgamma \)-aminobutyric acid type a (GABAA) receptors: mechanism and site of action. J Pharmacol Exp Ther 298:986–995

    CAS  PubMed  Google Scholar 

  13. Myznikov LV, Hrabalek A, Koldobskii GI (2007) Drugs in the tetrazole series. Chem Heterocycl Compd 43:1–9. doi:10.1007/s10593-007-0001-5

    CAS  Google Scholar 

  14. Ashton WT, Cantone LC, Meurer CL, Tolman RL, Greenlee WJ, Patchett AAR, Lynch J, Schorn TW, Strouse JF, Sieg PKS (1992) Renin inhibitors containing C-termini derived from mercaptoheterocycles. J Med Chem 36:2103–2112. doi:10.1021/jm00089a023

    Google Scholar 

  15. Powers RA, Shoichet BK (2002) Structure-based approach for binding site identification on AmpC beta-lactamase. J Med Chem 45:3222–3234. doi:10.1021/jm020002p

    CAS  PubMed  Google Scholar 

  16. Lee PY, Chang WN, Lu CH, Lin MW, Cheng BC, Chien CC, Chang C, Chang HW (2003) Clinical features and in vitro antimicrobial susceptibilities of community-acquired Klebsiella pneumoniae meningitis in Taiwan. Antimicrob Agents Chemother 51:957–962. doi:10.1093/jac/dkg158

    CAS  Google Scholar 

  17. Koldobskii GI, Ostrovskii VA, Popavskii VS (1981) Advances in the chemistry of tetrazoles. Chem Heterocycl Compd 17:965–988. doi:10.1007/BF00503523

    Google Scholar 

  18. Herr R (2002) 5-Substituted-1\(H\)-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 10:3379–3393. doi:10.1016/S0968-0896(02)00239-0

  19. Roh J, Vavrova K, Hrabalek A (2012) Synthesis and functionalization of 5-substituted tetrazoles. Eur J Org Chem 27:6101–6118. doi:10.1002/ejoc.201200469

    Google Scholar 

  20. Koldobskii GI (2006) Strategies and prospects infunctionalization of tetrazoles. Russ J Org Chem 42:469–486. doi:10.1134/S1070428006040014

    CAS  Google Scholar 

  21. Koldobskii GI, Ostrovskii VA (1994) Tetrazoles. Russ Chem Rev 63:797–814. doi:10.1070/RC1994v063n10ABEH000119

    Google Scholar 

  22. Wittenberger SJ (1994) Recent developments in tetrazole chemistry. Org Prep Proced Int 26:499–531. doi:10.1080/00304949409458050

    CAS  Google Scholar 

  23. Ess DH, Jones GO, Houk KN (2006) Conceptual, qualitative, and quantitative theories of 1,3-dipolar and diels-alder cycloadditions used in synthesis. Adv Synth Catal 348:2337–2361. doi:10.1002/adsc.200600431

    CAS  Google Scholar 

  24. Carpenter WR (1962) The formation of tetrazoles by the condensation of organic azides with nitriles. J Org Chem 27:2085–2088. doi:10.1021/jo01053a043

    CAS  Google Scholar 

  25. Demko ZP, Sharpless KB (2002) A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew Chem Int Ed 41:2110–2113. doi:10.1002/1521-3773(20020617)

  26. Demko ZP, Sharpless KB (2002) A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl ayanides. Angew Chem Int Ed 41:2113–2116. doi:10.1002/1521-3773(20020617)

  27. Aldhoun M, Massi A, Dondoni A (2008) Click azide-nitrile cycloaddition as a new ligation tool for the synthesis of tetrazole-tethered C-glycosyl \({\upalpha }\)-amino acids. J Org Chem 73:9565–9575. doi: 10.1021/jo801670k

    CAS  PubMed  Google Scholar 

  28. Bosch L, Vilarrasa J (2007) \(\text{ Cu }_{2}\text{(OTf) }_{2}\)-catalyzed and microwave-controlled preparation of tetrazoles from nitriles and organic azides under mild, safe conditions. Angew Chem Int Ed 46:3926–3930. doi: 10.1002/anie.200605095

    CAS  Google Scholar 

  29. Klapotke TM, Krumm B, Moll R (2011) Convenient room-temperature, mercury-assisted synthesis of tetrazoles by 1,3-dipolar cycloaddition. Eur J Inorg Chem 422–428. doi:10.1002/ejic.201001046

  30. Habibi D, Nasrollahzadeh M, Faraji AR, Bayat Y (2010) Efficient synthesis of arylaminotetrazoles in water. Tetrahedron 66:3866–3870. doi:10.1016/j.tet.2010.03.003

    CAS  Google Scholar 

  31. Habibi D, Nasrollahzadeh M (2010) Silica-supported ferric chloride \((\text{ FeCl }_{3}{-}\text{ SiO }_{2})\): an efficient and recyclable heterogeneous catalyst for the preparation of arylaminotetrazoles. Synth Commun 40:3159–3167. doi: 10.1080/00397910903370683

    CAS  Google Scholar 

  32. Nasrollahzadeh M, Habibi D, Shahkarami Z, Bayat Y (2009) A general synthetic method for the formation of arylaminotetrazoles using natural natrolite zeolite as a new and reusable heterogeneous catalyst. Tetrahedron 65:10715–10719. doi:10.1016/j.tet.10.029

    CAS  Google Scholar 

  33. Kereszty T (1935) German Patent 611,692. Chem Abstr 89:59949

    Google Scholar 

  34. Smith PAS, Clegg JM, Hall JH (1958) Synthesis of heterocyclic compounds from aryl azides. IV. Benzo-, methoxy-, and chloro-carbazoles. J Org Chem 23:524–529. doi:10.1021/jo01098a006

  35. Davis GB, Brandstetter TW, Smith C, Hackett L, Winchester BG, Fleet GWJ (1995) Tetrazoles of manno- and rhamno-furanoses. Tetrahedron Lett 36:7507–7510. doi:10.1016/0040-4039(95)01518-3

    CAS  Google Scholar 

  36. Davis GB, Nash RJ, Watson AA, Smith C, Fleet GWJ (1999) Tetrazoles of manno- and rhamno-furanoses. Tetrahedron 55:4501–4520. doi:10.1016/S0040-4020(99)00138-6

    CAS  Google Scholar 

  37. Davis GB, Brandstetter TW, Hackett L, Winchester BG, Nash RJ, Watson AA, Griffiiths RC, Smith C, Fleet GWJ (1999) Tetrazoles of manno- and rhamno-pyranoses: contrasting inhibition of mannosidases by [4.3.0] but of rhamnosidase by [3.3.0] bicyclic tetrazoles. Tetrahedron 55:4489–4500. doi:10.1016/S0040-4020(99)00137-4

    CAS  Google Scholar 

  38. Demko ZP, Sharpless KB (2001) An intramolecular [2 + 3] cycloaddition route to fused 5-heterosubstituted tetrazoles. Org Lett 3:4091–4094. doi:10.1021/ol010220x

    CAS  PubMed  Google Scholar 

  39. Hanessian S, Simard D, Simard BD, Chenel C, Haak E (2008) Proximity-assisted cycloaddition reactions-facile Lewis acid-mediated synthesis of diversely functionalized bicyclic tetrazoles. Org Lett 10:1381–1384. doi:10.1021/ol703071c

    CAS  PubMed  Google Scholar 

  40. Couty F, Durrat F, Prim D (2004) Expeditive synthesis of homochiral fused tri- and tetrazoles–piperazines from \({\upbeta }\)-amino alcohols. Tetrahedron Lett 45:3725–3728. doi: 10.1016/j.tetlet.2004.03.092

    CAS  Google Scholar 

  41. Ek F, Manner S, Wistrand LG, Frejd T (2004) Synthesis of fused tetrazole derivatives via a tandem cycloaddition and N-allylation reaction and parallel synthesis of fused tetrazole amines. J Org Chem 69:1346–1352. doi:10.1021/jo035498c

    CAS  PubMed  Google Scholar 

  42. Bliznets IV, Shorshnev SV, Aleksandrov GG, Stepanov AE (2004) Synthesis of a new tricyclic 3-(tetrazol-5-yl)pyridine system from 2-(azidomethyl)nicotinonitriles. Tetrahedron Lett 45:9127–9130. doi:10.1016/j.tetlet.2004.10.016

    CAS  Google Scholar 

  43. Lukyanov SM, Bliznets IV, Shorshnev SV, Aleksandrov GG, Stepanov AE, Vasilev AA (2006) Microwave-assisted synthesis and transformations of sterically hindered 3-(5-tetrazolyl)pyridines. Tetrahedron 62:1849–1863. doi:10.1016/j.tet.2005.11.039

    CAS  Google Scholar 

  44. Borah P, Naidu PS, Bhuyan PJ (2012) Synthesis of some tetrazole fused pyrido[2,3-c]coumarin derivatives from a one-pot three-component reaction via intramolecular 1,3-dipolar cycloaddition reaction of azide to nitriles. Tetrahedron Lett 53:5034–5037. doi:10.1016/j.tetlet.2012.07.060

    CAS  Google Scholar 

  45. Abell AD, Foulds GJ (1997) Synthesis of a cis-conformationally restricted peptide bond isostere and its application to the inhibition of the HIV-1 protease. J Chem Soc Perkin Trans 1:2475–2482. doi:10.1039/A702458D

    Google Scholar 

  46. May BCH, Abell AD (2002) \({\upalpha }\)-Methylene tetrazole-based peptidomimetics: synthesis and inhibition of HIV protease. J Chem Soc Perkin Trans 1:172–178. doi: 10.1039/B109128J

    Google Scholar 

  47. Kennedy LJ (2010) A mild and general one-pot preparation of cyanoethyl-protected tetrazoles. Tetrahedron Lett 51:2010–2013. doi:10.1016/j.tetlet.2010.02.034

    CAS  Google Scholar 

  48. Hernandez AS, Cheng PTW, Musial CM, Swartz SG, George RJ, Grover G, Slusarchyk D, Seethala RK, Smith M, Dickinson K, Giupponi L, Longhi DA, Flynn N, Murphy BJ, Gordon DA, Biller SA, Robl JA, Tino JA (2007) Discovery, synthesis, and structure–activity studies of tetrazole based growth hormone secretagogues. Bioorg Med Chem Lett 17:5928–5933. doi:10.1016/j.bmcl.2007.07.099

  49. Al-Hourani BJ, Sharma SK, Mane JY, Tuszynski J, Baracos V, Kniess T, Suresh M, Pietzsch J, Wuest F (2011) Synthesis and evaluation of 1,5-diaryl-substituted tetrazoles as novel selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem Lett 21:1823–1826. doi:10.1016/j.bmcl.2011.01.057

    CAS  PubMed  Google Scholar 

  50. Al-Hourani BJ, Sharma SK, Suresh M, Wuest F (2012) Novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem Lett 22:2235–2238. doi:10.1016/j.bmcl.2012.01.093

    CAS  PubMed  Google Scholar 

  51. Jedhe GS, Paul D, Gonnade RG, Santra MK, Hamel E, Nguyen TL, Sanjayan GJ (2013) Correlation of hydrogen-bonding propensity and anticancer profile of tetrazole-tethered combretastatin analogues. Bioorg Med Chem Lett 23:4680–4684. doi:10.1016/j.bmcl.2013.06.004

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Athanassopoulos CM, Garnelis T, Vahliotis D, Papaioannou D (2005) Efficient syntheses of 5-aminoalkyl-1H-tetrazoles and of polyamines incorporating tetrazole rings. Org Lett 7:561–564. doi:10.1021/ol0477069

    CAS  PubMed  Google Scholar 

  53. Mitsunobu O (1981) The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1–28. doi:10.1055/s-1981-29317

  54. Schroeder GM, Marshall S, Wan H, Purandare AV (2010) Improved conditions for converting sterically hindered amides to 1,5-disubstituted tetrazoles. Tetrahedron Lett 51:1404–1406. doi:10.1016/j.tetlet.2010.01.024

    CAS  Google Scholar 

  55. Batey RA, Powell DA (2000) A general synthetic method for the formation of substituted 5-aminotetrazoles from thioureas: a strategy for diversity amplification. Org Lett 2:3237–3240. doi:10.1021/ol006465b

    CAS  PubMed  Google Scholar 

  56. Nelson DW, Gregg RJ, Kort ME, Medrano AP, Voight EA, Wang Y, Grayson G, Namovic MT, Roberts DLD, Niforatos W, Honore P, Jarvis MF, Faltynek CR, Carroll WA (2006) Structure–activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole \(\text{ P2X }_{7}\) antagonists. J Med Chem 49:3661–3666. doi: 10.1021/jm051202e

    Google Scholar 

  57. Atherton FR, Lambert RW (1983) Synthesis of 3(s)-acylamino-1-[(phenyl)(1h-tetrazol-5-yl)amino]-2-azetidinones. Tetrahedron 39:2599–2608. doi:10.1016/S0040-4020(01)92153-2

    CAS  Google Scholar 

  58. Banert K, Klapotke TM, Sproll SM (2009) Synthesis of \(N\)-[1-(2-hydroxyethyl)-1\(H\)-tetrazol-5-yl]-\(N\)-methylhydrazine as polymeric precursor. Eur J Org Chem 24:275–281. doi: 10.1002/ejoc.200800764

    Google Scholar 

  59. Esikov KA, Morozova SE, Malin AA, Ostrovskii VA (2002) Tetrachlorosilane–sodium azide system in the synthesis of tetrazole-containing amino acid derivatives. Russ J Org Chem 38:1370–1373. doi:10.1023/A:1021624401405

    CAS  Google Scholar 

  60. Morozova SE, Esikov KA, Dmitrieva TN, Malin AA, Ostrovskii VA (2004) Tetrachlorosilane-sodium azide system in the synthesis of tetrazole-containing d,l-tryptophane derivatives. Russ J Org Chem 40:443–445. doi:10.1023/B:RUJO.0000034989.85330.06

    CAS  Google Scholar 

  61. Esikov KA, Zubarev VY, Malin AA, Ostrovskii VA (2000) Use of the tetrachlorosilan–sodium azide system for synthesis of tetrazoles from carboxylic acid amides. Chem Heterocycl Compd 36:878–878. doi:10.1007/BF02256929

    CAS  Google Scholar 

  62. Tomilov YV, Kostyuchenko IV, Novichkov AI, Shulishov EV (2011) Formation of tetrazoles on diazocyclopropane generation. Mendeleev Commun 21:302–304. doi:10.1016/j.mencom.2011.11.002

    CAS  Google Scholar 

  63. Jadhav NC, Jagadhane PB, Patel KN, Telvekar VN (2013) n expedient route to the azoles through oxidative desulfurization using iodine reagent. Tetrahedron Lett 54:101–105. doi:10.1016/j.tetlet.2012.10.114

    CAS  Google Scholar 

  64. Xiao J, Zhang X, Wang D, Yuan C (1999) Synthesis of trifuoromethyltetrazoles via building block strategy. J Fluor Chem 99:83–85. doi:10.1016/S0022-1139(99)00122-0

    CAS  Google Scholar 

  65. Hegarty AF, Tynan NM, Fergus S (2002) Rate-determining nitrogen inversion in the isomerisation of isoimides to imides and azides to tetrazoles: direct observation of intermediates stabilized by trifluoroethyl groups. J Chem Soc Perkin Trans 2:1328–1334. doi:10.1039/b202005j

    Google Scholar 

  66. Aly AA, Shaker RM (2005) 5-Benzyl-1H-tetrazols from the reaction of 1-aryl-5-methyl-1H-tetrazoles with 1,2-dehydrobenzene. Tetrahedron Lett 46:2679–2682. doi:10.1016/j.tetlet.2005.02.072

    CAS  Google Scholar 

  67. Pokhodylo NT, Teslenko YO, Matiychuk VS, Obushak MD (2009) Synthesis of 2,1-benzisoxazoles by nucleophilic substitution of hydrogen in nitroarenes activated by the azole ring. Synthesis 2741–2748. doi:10.1055/s-0029-1216875

  68. Katritzky AR, Cai C, Singh SK (2006) Efficient microwave access to polysubstituted amidines from imidoylbenzotriazoles. J Org Chem 71:3375–3380. doi:10.1021/jo052443x

    CAS  PubMed  Google Scholar 

  69. Katritzky AR, Cai C, Meher NK (2007) Efficient synthesis of 1,5-disubstituted tetrazoles. Synthesis 1202–1208. doi:10.1055/s-2007-966001

  70. Tsuge O, Urano S, Oe K (1980) Reactions of trimethylsilyl azide with heterocumulenes. J Org Chem 45:5130–5139. doi:10.1021/jo01313a021

    CAS  Google Scholar 

  71. Holt J, Fiksdahl A (2007) Nitropyridyl isocyanates in 1,3-dipolar cycloaddition reactions. J Heterocycl Chem 44:375–379. doi:10.1002/jhet.5570440215

    CAS  Google Scholar 

  72. Sakai Y, Ikeuchi K, Yamada Y, Wakimoto T, Kan T (2010) Modified Julia–Kocienski reaction promoted by means of \(m\)-NPT(nitrophenyltetrazole) sulfone. Synlett 827–829. doi:10.1055/s-0029-1219386

  73. Percival DF, Herbst RM (1957) Alkylated 5-aminotetrazoles, their preparation and properties. J Org Chem 22:925. doi:10.1021/jo01359a019

    CAS  Google Scholar 

  74. Vorobiov AN, Gaponik PN, Petrov PT, Ivashkevich OA (2006) One-pot syntheses of 5-amino-1-aryltetrazole derivatives. Synthesis 1307–1312. doi:10.1055/s-2006-926403

  75. Coffinier D, El Kaim L, Grimaud L (2009) Isocyanide-based two-step three-component keteneimine formation. Org Lett 11:1825–1827. doi:10.1021/ol9004432

    CAS  PubMed  Google Scholar 

  76. Sarvary A, Shaabani S, Shaabani A, Ng SW (2011) A two-step synthesis of 1,5-disubstituted tetrazoles containing a siloxy or sulfonamide group. Tetrahedron Lett 52:5930–5933. doi:10.1016/j.tetlet.2011.08.114

    CAS  Google Scholar 

  77. Karabanovich G, Roh J, Padelkova Z, Novak Z, Vavrova K, Hrabalek A (2013) One-pot synthesis of 1-substituted-5-alkylselanyl-1\(H\)-tetrazoles from isoselenocyanates: unexpected formation of \(N\)-alkyl-\(N\)-arylcyanamides and (Z)-Se-alkyl-\(N\)-cyano-\(N\),\(N^{\prime }\)-diarylisoselenoureas. Tetrahedron 69:8798–8808. doi: 10.1016/j.tet.2013.07.103

    CAS  Google Scholar 

  78. Garrison JA, Herbst RM (1957) Synthesis and characterization of nitraminotetrazoles. J Org Chem 22:278–283. doi:10.1021/jo01354a014

    CAS  Google Scholar 

  79. Joo YH, Shreeve JM (2008) 1-Substituted 5-aminotetrazoles: syntheses from \(\text{ CNN }_{3}\) with primary amines. Org Lett 10:4665–4667. doi: 10.1021/ol8019742

    CAS  PubMed  Google Scholar 

  80. Joo YH, Twamley B, Garg S, Shreeve JM (2008) Energetic nitrogen-rich derivatives of 1,5-diaminotetrazole. Angew Chem Int Ed 47:6236–6239. doi:10.1002/anie.200801886

    CAS  Google Scholar 

  81. Joo YH, Shreeve JM (2009) Energetic mono-, di-, and trisubstituted nitroiminotetrazoles. Angew Chem Int Ed 48:564–567. doi:10.1002/anie.200804755

    CAS  Google Scholar 

  82. Polivanova AG, Shkavrov SV, Churakov AV, Lermontov AS, Lermontov SA (2010) A novel synthesis of 1,5-disubstituted fluorinated tetrazoles from 1,1-difluoroazides. Tetrahedron Lett 51:4205–4207. doi:10.1016/j.tetlet.2010.06.016

    CAS  Google Scholar 

  83. Lovelette CA (1979) [1,2,4]Triazines. Synthesis of selected members of the s-triazolo[3,4-f][1,2,4]triazine and tetrazolo[1,5-f][1,2,4]triazine ring systems. J Heterocycl Chem 16:555–560. doi:10.1002/jhet.5570160330

    CAS  Google Scholar 

  84. Hajbs G, Messmer A, Neszmelyi A, Parkanyi L (1984) Synthesis and structural study of azidonaphtho-as-triazines: “annelation effect” in azide-tetrazole equlibria. J Org Chem 49:3199–3203. doi:10.1021/jo00191a029

    Google Scholar 

  85. Willer RL (1988) Tetrazolo[1,5-b I[1,2,4]triazines: an alternate synthesis and chemistry. J Org Chem 53:5371–5374. doi:10.1021/jo00257a037

    CAS  Google Scholar 

  86. Rahimizadeh M, Bakavoli M, Gordi Z, Seyedi SM (2011) Synthesis of two new heterocyclic systems: Furo[\(3^{\prime }\),\(2^{\prime }\):5,6]pyrimido[2,1-\(c\)][1,2,4]triazines and furo[3,2-\(e\)][1,2,3,4]tetrazolo[1,5-\(a\)]pyrimidine. J Iran Chem Soc 8:1135–1138. doi: 10.1007/BF03246571

    CAS  Google Scholar 

  87. Taha MAM, El-Badry SM (2008) Design, synthesis, and antimicrobial activity of fused triheterocyclic nitrogen systems involving tetrazolo[1,5-\(b\)][1,2,4]triazines. Monatsh Chem 139:1261–1267. doi: 10.1007/s00706-008-0902-8

    CAS  Google Scholar 

  88. Sirakanyan SN, Geronikaki A, Spinelli D, Hovakimyan AA, Noravyan AS (2013) Synthesis and structure of condensed triazolo- and tetrazolopyrimidines. Tetrahedron 69:10637–10644. doi:10.1016/j.tet.2013.10.015

    CAS  Google Scholar 

  89. Georg GI, Guan X, Kant J (1988) Asymmetric synthesis of \({\upalpha }\)-alkylated \({\upalpha }\)-amino acids via Schmidt rearrangement of \({\alpha }\),\({\alpha }\)-bisalkylated \({\upbeta }\)-keto esters. Tetrahedron Lett 29:403–406. doi: 10.1016/S0040-4039(00)80107-0

    CAS  Google Scholar 

  90. EI-Ahl AAS, Elmorsy SS, Soliman H, Amer FA (1995) A facile and convenient synthesis of substituted tetrazole derivatives from ketones or \({\upalpha }\),\({\upbeta }\)-unsaturated ketones. Tetrahedron Lett 36:7337–7340. doi: 10.1016/0040-4039(95)01513-H

    Google Scholar 

  91. Hassner A, Fibiger R, Amarasekara AS (1988) \(\text{ TiCl }_{4}\)-catalyzed addition of \(\text{ HN }_{3}\) to aldehydes and ketones. Thermolysis and photolysis of \({\upalpha }\)-azido ethers. J Org Chem 53:22–27. doi: 10.1021/jo00236a006

    CAS  Google Scholar 

  92. Furmeier S, Metzger JO (2003) Synthesis of new heterocyclic fatty compounds. Eur J Org Chem 17:885–893. doi:10.1002/ejoc.200390134

    Google Scholar 

  93. Cristau HJ, Marat X, Vors JP, Pirat JL (2003) A convenient synthesis of tetrazole, precursors of \({\upalpha }\)-dialkylated \({\upalpha }\)-amino acids, by reaction of trimethylsilyl azide with \({\upalpha }\)-dialkylated \({\upbeta }\)-ketoesters. Tetrahedron Lett 44:3179–3181. doi: 10.1016/S0040-4039(03)00444-1

    CAS  Google Scholar 

  94. Georg GU, Guan X (1992) Asymmetric synthesis of \({\upalpha }\)-alkylated \({\upalpha }\)-amino acids: azocane-2-carboxylic acids. Tetrahedron Lett 33:17–20. doi: 10.1016/S0040-4039(00)77662-3

    CAS  Google Scholar 

  95. Soliman HA, Salama TA (2013) Silicon-mediated highly efficient synthesis of 1,8-doixo-octahydroxanthenes and their transformation to novel functionalized pyrano-tetrazolo [1,5-\(a\)]azepine derivatives. Chin Chem Lett 24:404–406. doi: 10.1016/j.cclet.2013.03.021

    CAS  Google Scholar 

  96. Salama TA, EI-Ahl AAS, Khalil AGM, Girges MM, Lackner B, Steind C, Elmorsy SS (2003) A convenient regiospecific synthesis of new conjugated tetrazole derivatives via the reaction of dienones with the tetrachlorosilane–sodium azide reagent and their NMR structural assignment. Monatsh Chem 134:1241–1252. doi:10.1007/s00706-003-0045-x

    CAS  Google Scholar 

  97. Hassner A, Levy LA, Gault R (1966) Stereospecific additions to olefins: synthetic utility of nitrilium ion intermediates. Tetrahedron Lett 7:3119–3123. doi:10.1016/S0040-4039(01)99925-3

  98. Hajra S, Sinha D, Bhowmick M (2007) Metal triflate catalyzed reactions of alkenes, NBS, nitriles, and \(\text{ TMSN }_{3}\): synthesis of 1,5-disubstituted tetrazoles. J Org Chem 72:1852–1855. doi: 10.1021/jo062432j

    CAS  PubMed  Google Scholar 

  99. Srihari P, Dutta P, Rao RS, Yadav JS, Chandrasekhar S, Thombare P, Mohapatra J, Chatterjee A, Jain MR (2009) Solvent free synthesis of 1,5-disubstituted tetrazoles derived from Baylis Hillman acetates as potential TNF-\({\upalpha }\) inhibitors. Bioorg Med Chem Lett 19:5569–5572. doi: 10.1016/j.bmcl.2009.08.047

    CAS  PubMed  Google Scholar 

  100. Aridoss G, Laali KK (2011) Highly efficient synthesis of 5-substituted 1\(H\)-tetrazoles catalyzed by Cu–Zn alloy nanopowder, conversion into 1,5- and 2,5-disubstituted tetrazoles, and synthesis and NMR studies of new tetrazolium ionic liquids. Eur J Org Chem 26:6343–6355. doi: 10.1002/ejoc.201100957

    Google Scholar 

  101. Singh US, Shankar R, Yadav GP, Kharkwal G, Dwivedi A, Keshri G, Singh MM, Moulik PR, Hajel K (2008) Synthesis and structure guided evaluation of estrogen agonist and antagonist activities of some new tetrazolyl indole derivatives. Eur J Med Chem 43:2149–2158. doi:10.1016/j.ejmech.2007.10.035

    CAS  PubMed  Google Scholar 

  102. Mancheno OG, Bolm C (2007) Synthesis of N-(1H)-tetrazole sulfoximines. Org Lett 9:2951–2954. doi:10.1021/ol071302+

    PubMed  Google Scholar 

  103. Disli A, Mercan S, Yavuz S (2013) Synthesis and antimicrobial activity of new pyrimidine derivatives incorporating 1H-tetrazol-5-ylthio moiety. J Heterocycl Chem 50:1446–1450. doi:10.1002/jhet.1585

    CAS  Google Scholar 

  104. Efimova JA, Mashkova EA, Artamonova TV, Koldobskii GI (2008) Alkylation of 5-benzyl-tetrazole under microwave activation conditions. Chem Heterocycl Compd 44:498–499. doi:10.1007/s10593-008-0069-6

    CAS  Google Scholar 

  105. Couri MR, Luduvico I, Santos L, Alves R, Prado MA, Gil RF (2007) Microwave-assisted efficient preparation of novel carbohydrate tetrazole derivatives. Carbohydr Res 342:1096–1100. doi:10.1016/j.carres.2007.02.007

    CAS  PubMed  Google Scholar 

  106. Efimova YA, Artamonova TV, Koldobskii GI (2009) Tetrazoles: LIV. alkylation of 5-aryltetrazoles under microwave activation. Russ J Org Chem 45:725–727. doi:10.1134/S1070428009050133

    CAS  Google Scholar 

  107. Minakakis PM, Filippakou M, Sinanoglou C, Kokotos G (2006) Synthesis of tetrazole analogs of \(\gamma \)- and \(\delta \)-amino acids. J Pept Sci 12:377–382. doi: 10.1002/psc.737

    Google Scholar 

  108. Upadhayaya RS, Jain S, Sinha N, Kishore N, Chandra R, Arora SK (2004) Synthesis of novel substituted tetrazoles having antifungal activity. Eur J Med Chem 39:579–592. doi:10.1016/j.ejmech.2004.03.004

    CAS  PubMed  Google Scholar 

  109. Alexander JP, Cravatt BF (2006) The putative endocannabinoid transport blocker LY2183240 is a potent inhibitor of FAAH and several other brain serine hydrolases. J Am Chem Soc 128:9699–9704. doi:10.1021/ja062999h

    CAS  PubMed  Google Scholar 

  110. Ortar G, Cascio MG, Moriello AS, Camalli M, Morera E, Nalli M, Marzo VD (2008) Carbamoyl tetrazoles as inhibitors of endocannabinoid inactivation: a critical revisitation. Eur J Med Chem 43:62–72. doi:10.1016/j.ejmech.2007.02.023

    CAS  PubMed  Google Scholar 

  111. Efimova YA, Artamonova TV, Koldobskii GI (2010) Microwave-assisted arylation of 5-substituted tetrazoles. Russ J Org Chem 46:612–614. doi:10.1134/S1070428010040366

    CAS  Google Scholar 

  112. Annan N, Paris R, Jordan F (1989) (E)-4-(.alpha.-Halop-tolyl)-2-oxo-3-butenoic acids inhibit yeast pyruvate decarboxylase by a diversity of mechanisms: multiple fate for the thiamin-bound enamine intermediate. J Am Chem Soc 111:8895–8901. doi:10.1021/ja00206a019

  113. Chebanov VA, Sesenko SM, Gurley TW (2008) Six-membered azaheterocycles based on 1,3-binucleophiles. In: Azaheterocycles based on \({\upalpha }\),\({\upbeta }\)-unsaturated carbonyls. Springer, Berlin, pp 83– 107

  114. Hussein AM, Ahmed OM (2010) Regioselective one-pot synthesis and anti-proliferative and apoptotic effects of some novel tetrazolo[1,5-\(a\)]pyrimidine derivatives. Bioorg Med Chem 18:2639–2644. doi: 10.1016/j.bmc.2010.02.028

    CAS  PubMed  Google Scholar 

  115. Chebanov VA, Sakhno YI, Desenko SM, Shishkina SV, Musatov VI, Shishkin OV, Knyazeva IV (2005) Three-component procedure for the synthesis of 5-aryl-5,8-dihydroazolo[1,5-\(a\)]pyrimidine-7-carboxylic acids. Synthesis 2597–2601. doi:10.1055/s-2005-872073

  116. Gladkov E, Sirko S, Khanetskii B, Lukinova E, Desenko S (2007) Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides. Chem Pap 61:146–149. doi:10.2478/s11696-007-0012-9

    CAS  Google Scholar 

  117. Drizin I, Holladay MW, Yi L, Zhang HQ, Gopalakrishnan S, Gopalakrishnan M, Whiteaker KL, Buckner SA, Sullivan JP, Carroll WA (2002) Deoxynucleic guanidine: synthesis and incorporation of purine nucleosides into positively charged DNG oligonucleotides. Bioorg Med Chem 12:1475–1481. doi:10.1016/j.bmc.2003.12.043

    Google Scholar 

  118. Yao CS, Lei S, Wang CH, Yu CX, Tu SJ (2008) Solvent-free synthesis of 5-methyl-7-aryl-4,7-dihydrotetrazolo[1,5-\(a\)]pyrimidine-6-carboxylic esters catalyzed by sulfamic acid. J Heterocycl Chem 45:1609–1613. doi: 10.1002/jhet.5570450609

    CAS  Google Scholar 

  119. Zeng LY, Cai C (2010) Iodine catalyzed one-pot multicomponent synthesis of a library of compounds containing tetrazolo[1,5-\(a\)]pyrimidine core. J Comb Chem 12:35–40. doi: 10.1021/cc9000983

    CAS  PubMed  Google Scholar 

  120. Ek F, Wistrand LG, Frejd T (2003) Synthesis of fused tetrazole- and imidazole derivatives via iodocyclization. Tetrahedron 59:6759–6769. doi:10.1016/S0040-4020(03)00818-4

    CAS  Google Scholar 

  121. Ek F, Wistrand LG, Frejd T (2003) Aromatic allylation via diazotization: variation of the allylic moiety and a short route to a benzazepine derivative. J Org Chem 68:1911–1918. doi:10.1021/jo026784b

    CAS  PubMed  Google Scholar 

  122. Paz NR, Santana AG, Francisco CG, Suarez E, Gonzalez CC (2012) Synthesis of tetrazole-fused glycosides by a tandem fragmentation–cyclization reaction. Org Lett 14:3388–3391. doi:10.1021/ol3013638

    CAS  PubMed  Google Scholar 

  123. Franckevicius V, Longbottom DA, Turner RM, Ley SV (2006) 8,9,10,10a-Tetrahydro-6H-tetrazolo[1,5-a]pyrrolo[2,1-c]pyrazines: new heterocyclic frameworks generated by an Ugi-type multicomponent reaction. Synthesis 3215–3223. doi:10.1055/s-2006-950219

  124. El Kaim L, Grimaud L, Patil P (2011) Three-component strategy toward 5-membered heterocycles from isocyanide dibromides. Org Lett 13:1261–1263. doi:10.1021/ol200003u

    PubMed  Google Scholar 

  125. Yi KY, Yoo S (1995) Synthesis of 5-aryl and vinyl tetrazoles by the palladium-catalyzed cross-coupling reaction. Tetrahedron Lett 36:1679–1682. doi:10.1016/0040-4039(95)00129-Z

    CAS  Google Scholar 

  126. Cho SD, Kim HK, Yim H, Kim MR, Lee JK, Kim JJ, Yoon YJ (2007) Suzuki–Miyaura coupling reaction of aryl chlorides using di(2,6-dimethylmorpholino)phenylphosphine as ligand. Tetrahedron 63:1345–1352. doi:10.1016/j.tet.2006.12.001

    CAS  Google Scholar 

  127. Tang Q, Gianatassio R (2010) Synthesis of 1,5-disubstituted tetrazoles via Suzuki–Miyaura cross-coupling of 5-chloro-1-phenyltetrazole. Tetrahedron Lett 51:3473–3476. doi:10.1016/j.tetlet.2010.04.091

    CAS  Google Scholar 

  128. Walker SD, Barder TE, Martinelli JR, Buchwald SL (2004) A rationally designed universal catalyst for Suzuki–Miyaura coupling processes. Angew Chem Int Ed 43:1871–1876. doi:10.1002/anie.200353615

    CAS  Google Scholar 

  129. Milne JE, Buchwald SL (2004) An extremely active catalyst for the Negishi cross-coupling reaction. J Am Chem Soc 126:13028–13032. doi:10.1021/ja0474493

    CAS  PubMed  Google Scholar 

  130. Tymtsunik AV, Bilenko VA, Kokhan SO, Grygorenko OO, Volochnyuk DM, Komarov IV (2012) 1-Alkyl-5-((di)alkylamino) tetrazoles: building blocks for peptide surrogates. J Org Chem 77:1174–1180. doi:10.1021/jo2022235

    CAS  PubMed  Google Scholar 

  131. Heppekausen J, Klapotke TM, Sproll SM (2009) Synthesis of functionalized tetrazenes as energetic compounds. J Org Chem 74:2460–2466. doi:10.1021/jo802738c

    CAS  PubMed  Google Scholar 

  132. Spulak M, Lubojacky R, Senel P, Kunes J, Pour M (2010) Direct C–H arylation and alkenylation of 1-substituted tetrazoles: phosphine as stabilizing factor. J Org Chem 75:241–244. doi:10.1021/jo902180u

    CAS  PubMed  Google Scholar 

  133. Gabrielli WF, Nogai SD, McKenzie JM, Cronje S, Raubenheimer HG (2009) Tetrazolyl and tetrazolylidene complexes of gold: a synthetic and structural study. New J Chem 33:2208–2218. doi:10.1039/b907022b

    CAS  Google Scholar 

  134. Faust MR, Hofner G, Pabel J, Wanner KT (2010) Azetidine derivatives as novel \(\upgamma \)-aminobutyric acid uptake inhibitors: synthesis, biological evaluation, and structure–activity relationship. Eur J Med Chem 45:24532466. doi: 10.1016/j.ejmech.2010.02.029

    Google Scholar 

  135. Saha B, Sharma S, Sawant D, Kundu B (2008) Application of the Pictet–Spengler reaction to aryl amine substrates linked to deactivated aromatic heterosystems. Tetrahedron 64:8676–8684. doi:10.1016/j.tet.2008.07.003

  136. Chen F, Qin C, Cui Y, Jiao N (2011) Implanting nitrogen into hydrocarbon molecules through C–H and C–C bond cleavages: a direct approach to tetrazoles. Angew Chem Int Ed 50:1–6. doi:10.1002/anie.201105505

  137. Abe T, Tao GH, Joo YH, Huang Y, Twamley B, Shreeve JM (2008) Activation of the C–F bond: transformation of \(\text{ CF }_{3}\)N=N– into 5-azidotetrazoles. Angew Chem Int Ed 47:7087–7090. doi: 10.1002/anie.200802459

    CAS  Google Scholar 

  138. Laha JK, Cuny GD (2008) Synthesis of tetrazolo[1,5-\(a\)]pyridines utilizing trimethylsilyl azide and tetrabutylammonium fluoride hydrate. Synthesis 4002–2006. doi:10.1055/s-0028-1083233

Download references

Acknowledgments

The authors gratefully acknowledge the partial support from the Research Councils of the Iran University of Science and Technology and Babol University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Maleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvary, A., Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol Divers 19, 189–212 (2015). https://doi.org/10.1007/s11030-014-9553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9553-3

Keywords

Navigation