Skip to main content

Advertisement

Log in

Predicting dual-targeting anti-influenza agents using multi-models

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Influenza is an acute respiratory infectious disease caused by influenza viruses. Its subtype can be distinguished based on the antigenicity of two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). One of the main challenges in anti-influenza drug development is the quick evolution of drug resistance due to virus mutations. One solution to this problem is to develop dual-targeting anti-influenza agents. In this paper, a new rationally designed virtual screening protocol that combines structure-based approaches (molecular docking and molecular dynamic simulations) and ligand-based approaches (support vector machines and 3D shape & electrostatic similarity algorithms) is reported for the virtual screening of dual-targeting agents against HA and NA. The final hits came from the consensus of the ligand- and receptor-based knowledge of HA and NA and were tested using ADMET predictions. Evidence from the binding energy calculations and binding mode analyses suggested that several of the hits are promising as dual-targeting anti-influenza agents. The virtual screening protocol may also lead to the identification of innovative drugs in other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Knipe DM (2007) Fields virology. vol v. 1. Lippincott Williams & Wilkins

  2. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897. doi:10.1056/NEJMoa1304459

    Article  CAS  PubMed  Google Scholar 

  3. Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, Bi Y, Wu Y, Li X, Yan J, Liu W, Zhao G, Yang W, Wang Y, Ma J, Shu Y, Lei F, Gao GF (2013) Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381:1926–1932. doi:10.1016/S0140-6736(13)60938-1

    Article  PubMed  Google Scholar 

  4. Das K, Aramini JM, Ma LC, Krug RM, Arnold E (2010) Structures of influenza A proteins and insights into antiviral drug targets. Nat Struct Mol Biol 17:530–538. doi:10.1038/Nsmb.1779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974. doi:10.1038/nrd2400

    Article  Google Scholar 

  6. Ge H, Wang YF, Xu J, Gu Q, Liu HB, Xiao PG, Zhou J, Liu Y, Yang Z, Su H (2010) Anti-influenza agents from Traditional Chinese Medicine. Nat Prod Rep 27:1758–1780. doi:10.1039/c0np00005a

    Article  CAS  PubMed  Google Scholar 

  7. Hayden FG, de Jong MD (2011) Emerging influenza antiviral resistance threats. J Infect Dis 203:6–10. doi:10.1093/infdis/jiq012

    Article  PubMed Central  PubMed  Google Scholar 

  8. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182. doi:10.1016/j.tips.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  9. Lu JJ, Pan W, Hu YJ, Wang YT (2012) Multi-target drugs: the trend of drug research and development. PLoS One 7:e40262. doi:10.1371/journal.pone.0040262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA (2013) Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 18:495–501. doi:10.1016/j.drudis.2013.01.008

    Article  PubMed Central  PubMed  Google Scholar 

  11. Guo CT, Sun XL, Kanie O, Shortridge KF, Suzuki T, Miyamoto D, Hidari KIPJ, Wong CH, Suzuki Y (2002) An O-glycoside of sialic acid derivative that inhibits both hemagglutinin and sialidase activities of influenza viruses. Glycobiology 12:183–190. doi:10.1093/glycob/12.3.183

    Article  CAS  PubMed  Google Scholar 

  12. Chang SS, Huang HJ, Chen CY (2011) Two birds with one stone? Possible dual-targeting H1N1 inhibitors from traditional Chinese medicine. PLoS Comput Biol 7:e1002315. doi:10.1371/journal.pcbi.1002315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Molecular Operating Environment (MOE) (2013) vol 2013.08 edn. Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

  14. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511. doi:10.1021/jm020406h

    Article  CAS  PubMed  Google Scholar 

  16. Al-qattan MN, Mordi MN (2010) Docking of sialic acid analogues against influenza A hemagglutinin: a correlational study between experimentally measured and computationally estimated affinities. J Mol Model 16:1047–1058. doi:10.1007/s00894-009-0618-7

    Article  CAS  PubMed  Google Scholar 

  17. Kim CU, Lew W, Williams MA, Wu H, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RC (1998) Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem 41:2451–2460. doi:10.1021/jm980162u

    Article  CAS  PubMed  Google Scholar 

  18. Lew W, Wu H, Mendel DB, Escarpe PA, Chen X, Laver WG, Graves BJ, Kim CU (1998) A new series of C3-aza carbocyclic influenza neuraminidase inhibitors: synthesis and inhibitory activity. Bioorg Med Chem Lett 8:3321–3324. doi:10.1016/S0960-894X(98)00587-3

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Xu WF, Liu AL, Du GH (2008) Design, synthesis, and preliminary evaluation of new pyrrolidine derivatives as neuraminidase inhibitors. Med Chem 4:206–209. doi:10.2174/157340608784325151

    Article  CAS  PubMed  Google Scholar 

  20. Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM (2012) Influenza neuraminidase: A druggable target for natural products. Nat Prod Rep 29:11–36. doi:10.1039/C1np00053e

    Article  CAS  PubMed  Google Scholar 

  21. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  22. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759. doi:10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  23. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P

  24. Vapnik VN (1995) The nature of statistical learning theory. Springer-Verlag New York Inc

  25. Tan P-N, Steinbach M, Kumar V (2005) Introduction to Data Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc

  26. Discovery Studio Modeling Environment (2009) vol Release 2.5. Accelrys Software Inc., San Diego: Accelrys Software Inc

  27. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97:245–271. doi:10.1016/S0004-3702(97)00063-5

    Article  Google Scholar 

  28. Kononenko I, Šimec E, Robnik-Šikonja M (1997) Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl Intell 7:39–55. doi:10.1023/A:1008280620621

    Article  Google Scholar 

  29. Hall MA (1999) Correlation-based Feature Selection for Machine Learning. The University of Waikato, Hamilton, NewZealand

    Google Scholar 

  30. Rogers D, Hopfinger AJ (1994) Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J Chem Inf Comp Sci 34:854–866. doi:10.1021/ci00020a020

    Article  CAS  Google Scholar 

  31. Chang CC, Lin CJ (2011) LIBSVM: A Library for Support Vector Machines. ACM Trans Intell Syst Technol 2:27. doi:10.1145/1961189.1961199

    Article  Google Scholar 

  32. Yan X, Li J, Liu Z, Zheng M, Ge H, Xu J (2013) Enhancing molecular shape comparison by weighted Gaussian functions. J Chem Inf Model 53:1967–1978. doi:10.1021/ci300601q

    Article  CAS  PubMed  Google Scholar 

  33. Hahn M (1997) Three-Dimensional Shape-Based Searching of Conformationally Flexible Compounds. J Chem Inf Comp Sci 37:80–86. doi:10.1021/ci960108r

    Article  CAS  Google Scholar 

  34. Li J, Ehlers T, Sutter J, Varma-O’brien S, Kirchmair J (2007) CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration. J Chem Inf Model 47:1923–1932. doi:10.1021/ci700136x

    Article  CAS  PubMed  Google Scholar 

  35. Xu J, Zhang Q, Shih CK (2006) V-cluster algorithm: a new algorithm for clustering molecules based upon numeric data. Mol Divers 10:463–478. doi:10.1007/s11030-006-9023-7

    Article  CAS  PubMed  Google Scholar 

  36. Ge H, Wang Y, Li C, Chen N, Xie Y, Xu M, He Y, Gu X, Wu R, Gu Q, Zeng L, Xu J (2013) Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing. J Chem Inf Model 53:2757–2764. doi:10.1021/ci400391s

    Article  CAS  PubMed  Google Scholar 

  37. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gotz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J Chem Theory Comput 8:1542–1555. doi:10.1021/ct200909j

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Wallingford CT

  40. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. doi:10.1016/j.jmgm.2005.12.005

    Article  PubMed  Google Scholar 

  41. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water, vol 79. vol 2. AIP

  42. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  43. Zhou RH, Harder E, Xu HF, Berne BJ (2001) Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems. J Chem Phys 115:2348–2358. doi:10.1063/1.1385159

    Article  CAS  Google Scholar 

  44. Suite 2010: QikProp (2012) version 3.3 edn. Schrödinger, LLC, New York, NY

  45. Poroikov V, Filimonov D, Lagunin A, Gloriozova T, Zakharov A (2007) PASS: identification of probable targets and mechanisms of toxicity. SAR QSAR Environ Res 18:101–110. doi:10.1080/10629360601054032

    Article  CAS  PubMed  Google Scholar 

  46. Kopp R, Kreuzer E, Oberhoffer M, Herrmann KA, Jauch KW, Reichart B (2006) Endovascular treatment of a symptomatic suture aneurysm caused by an aortic isthmus restenosis. Vascular 14:161–164. doi:10.2310/6670.2006.00026

    Article  PubMed  Google Scholar 

  47. Amaro RE, Swift RV, Votapka L, Li WW, Walker RC, Bush RM (2011) Mechanism of 150-cavity formation in influenza neuraminidase. Nat Commun 2:388. doi:10.1038/ncomms1390

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Introduction of Innovative R&D Team Program of Guangdong Province (No. 2009010058) and the National Natural Science Foundation of China (No. 81001372, 81173470). The National Supercomputing Center in Guangzhou (2012Y2-00048, 201200000037) provided the computing resources necessary for this report. The research was also supported in part by the Guangdong Province Key Laboratory of Computational Science and the Guangdong Province Computational Science Innovative Research Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ge, H., Li, Y. et al. Predicting dual-targeting anti-influenza agents using multi-models. Mol Divers 19, 123–134 (2015). https://doi.org/10.1007/s11030-014-9552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9552-4

Keywords

Navigation