Skip to main content
Log in

Synthesis of novel organosilicon compounds possessing highly substituted imidazole core catalyzed by antimony trioxide

  • FULL-LENGTH PAPER
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A general synthetic route for the exclusive preparation of tetrasubstituted imidazoles, possessing benzylic methyl groups has been developed using \(\hbox {Sb}_{2}\hbox {O}_{3}\) via solvent-free, one-pot reaction conditions. Detailed results from our investigation on the bromination of the benzylic methyl groups of imidazoles are described. The products generated during this study were utilized as substrates for the synthesis of organosilicon-containing imidazoles. Synthesis of tris(triorganosilyl)methylimidazole derivatives was carried out using organolithium reagents \((\hbox {RSiMe}_{2})_{3}\hbox {CLi},\) (R= H, Me, Ph) prepared via metalation of \((\hbox {RSiMe}_{2})_{3}\hbox {CH}\) with lithiumdiisopropylamide or methyllithium in THF, in excellent yields. \((\hbox {RSiMe}_{2})_{3}\hbox {CLi}\), (R= Me, Ph) were treated with formylated imidazole to afford imidazole containing 2,2-bis(organosilyl)ethenyl groups. 2-(4-(2,2-bis(trimethylsilyl)vinyl)phenyl)-1,4,5-triphenyl-1\(H\)-imidazole was obtained via Peterson reaction in high yield. However, compound 2-(4-(2,2-bis(dimethyl(phenyl)silyl)vinyl)phenyl)-1,4,5-triphenyl-1\(H\)-imidazole was obtained in low yield likely because of the steric hindrance of the \((\hbox {PhSiMe}_{2})_{3}\hbox {C}\)- group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Showell GA, Mills JS (2003) Chemistry challenges in lead optimization: silicon isosteres in drug discovery. Drug Discov Today 8:551–556. doi:10.1016/S1359-6446(03)02726-0

    Article  CAS  PubMed  Google Scholar 

  2. Ziaee M, samini M, Bolourtchian M, Ghaffarzadeh M, Ahmadi M, Egbal MA, Khorrami A, Andalib S, Maleki-Dizaji N, Garjani A (2012) Synthesis of a novel siliconized analog of Clofibrate (silafibrate) and comparison of their anti-inflammatory activities. Iran J Pharm Res 11:91–95

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Li Y, Kock DC, Smith PJ, Guzgay H, Hendricks DT, Naran K, Mizrahi V, Warner DF, Chibala K, Smith GS (2013) Synthesis, characterization, and pharmacological evaluation of silicon-containing aminoquinoline organometallic complexes as antiplasmodial, antitumor, and antimycobacterial agents. Organometallic 32:141–150. doi:10.1021/om300945c

    Article  Google Scholar 

  4. Safa KD, Mosaei OU (2010) Synthesis of novel Calix[4]arenes containing organosilicon groups. J Organomet Chem 695:26–31. doi:10.1016/j.jorganchem.2009.09.021

    Article  CAS  Google Scholar 

  5. Safa KD, Ghorbanpour K, Hassanpour A, Tofangdarzadeh S (2009) 1,4-Bis[2,2-bis(trimethylsilyl)ethenyl]benzene: Regioselective ring opening of its \(\alpha,\beta \)-epoxybis(silane) with some nucleophiles. J Organomet Chem 694:1907–1911. doi: 10.1016/j.jorganchem.2009.01.030

    Article  CAS  Google Scholar 

  6. Hreczycho G, Pawluc P, Marciniec B (2006) An efficient synthesis of unsymmetrical 1,1-bis(silyl)ethenes. Synthesis 8:1370–1374. doi:10.1055/8-2006-926406

    Google Scholar 

  7. Safa KD, Hassanpour A, Tofangdarzadeh S (2008) Synthesis of 1,1-bis(silyl)-1-alkene derivatives bearing Si–H functional groups via Peterson protocol. J Organomet Chem 693:3622–3626. doi:10.1016/j.jorganchem.2008.08.035

  8. Pawluc P, Hreczycho G, Marciniec B (2006) A new selective approach to 1,1-bis(silyl)-2-arylethenes and 1,1-bis(silyl)-1,3-butadienes via Sequential silylative coupling-Heck coupling reactions. J Org Chem 71:8676–8679. doi:10.1021/jo0616254

    Article  CAS  PubMed  Google Scholar 

  9. Safa KD, Namvari M, Hassanpour A, Tofangdarzadeh S (2009) Synthesis and desilylation of some bis(trimethylsilyl)alkenes and polymers bearing bis(silyl)alkenyl groups. J Organomet Chem 694:2448–2453. doi:10.1016/j.jorganchem.2009.03.011

    Article  CAS  Google Scholar 

  10. Hasaninejad A, Firoozi S (2013) Catalyst-free, one-pot, three-component synthesis of 5-amino-1,3-aryl-1\(H\)-pyrazole-4-carbonitriles in green media. Mol Divers 17:459–469. doi: 10.1007/s11030-013-9445-y

    Article  CAS  PubMed  Google Scholar 

  11. Bhattacharya RN, Kundu P, Maiti G (2011) Antimony trichloride catalyzed three-component reaction of urea, aldehydes and cyclic enol ethers: a novel route to 4-arylhexahydrofuro[2,3-\(d\)]pyrimidin-2(3\(H\))-ones. Tetrahedron Lett 52:26–28. doi: 10.1016/j.tetlet.2010.10.064

    Article  CAS  Google Scholar 

  12. Teimouri A, Najafi CA (2011) An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-trisubstituted imidazoles catalyzed via solid acid nano-catalyst. J Mol Catal A 346:39–45. doi:10.1016/j.molcata.2011.06.007

    Article  CAS  Google Scholar 

  13. Safari J, Gandomi-Ravandi S, Akbari Z (2013) Sonochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles using nanocrystalline \(\text{ MgAl }_{2}\text{ O }_{4}\) as an effective catalyst. J Advanced Res 4:509–514. doi: 10.1016/j.jare.2012.09.001

    Article  Google Scholar 

  14. Ramesh K, Murthy SN, Karnakar K, Nageswar YVD, Vijayalakhshmi K Devi, B.L.A., P Prasad R.B.N, (2012) A novel bioglycerol-based recyclable carbon catalyst for an efficient one-pot synthesis of highly substituted imidazoles. Tetrahedron Lett 53:1126–1129. doi:10.1016/j.tetlet.2011.12.092

  15. Safari J, Khalili SD, Banitaba SH (2011) Three-component, one-pot synthesis of 2,4,5-trisubstituted imidazoles catalyzed by \(\text{ TiCl }_{4}\text{-SiO }_{2}\) under conventional heating conditions or microwave irradiation. Synth Commun 41:2359–2373. doi:10.1080/00397911.2010.502994

  16. Vikrant K, Ritu M, Neha S (2012) Synthesis of substituted imidazoles via a multi-component condensation catalyzed by \(p\)-toluene sulfonic acid, PTSA. Res J Chem Sci 2:18–23

  17. Samai S, Nandi GC, Singh P, Singh MS (2009) L-Proline: an efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 2,4,5-trisubstituted imidazoles. Tetrahedron 65:10155–10161. doi:10.1016/j.tet.2009.10.019

    Article  CAS  Google Scholar 

  18. Kumar D, Kommi DN, Patel AR, Chakraborti AK (2012) Catalytic procedures for multicomponent synthesis of imidazoles: selectivity control during the competitive formation of tri- and tetra-substituted imidazoles. Green Chem 14:2038–2049. doi:10.1039/C2GC35277J

    Article  CAS  Google Scholar 

  19. Eaborn C, Hitchcok P B, Lickiss P D (1983) Some derivatives of tris(dimethylsilyl)methane. A novel bicyclic tris(disiloxane) with manxane structure. J Organomet Chem 252:281–288. doi:10.1016/S0022-328X(00)99827-9.

  20. Gröbel T, Seebach D (1977) Erzeugung von und olefinierung mit \(\alpha \)-S-, -Se-, -Si- und -Sn-perheterosubstituierten (trimethylsilyl)methyllithium-verbindungen. Chem Ber 110:852–866. doi: 10.1002/cber.19771100307

    Article  Google Scholar 

  21. Eaborn C, Al-mansour AI (1985) Reactions at silicon centres bearing the bulky tris(phenyl dimethylsilyl)methyl Ligand. J Chem Soc Perkin Trans 2:729–735

    Article  Google Scholar 

  22. Safa KD, Hassanpour A, Tofangdarzadeh S (2008) Synthesis of 1,1-bis(silyl)-1-alkene derivatives bearing Si–H functional groups via Peterson protocol. J Organomet Chem 693:3622. doi:10.1016/j.jorganchem.2008.08.035

    Article  CAS  Google Scholar 

  23. Peterson DJ (1968) Carbonyl olefination reaction using silyl-substituted organometallic compounds. J Org Chem 33:780–784. doi:10.1021/jo01266a061

    Article  CAS  Google Scholar 

  24. Kwan ML, Battiste MA (2002) A convenient one-pot, organoaluminum mediated vinylsilane synthesis from non-enolizable ketones via the Peterson protocol. Tetrahedron Lett 43:8765. doi:10.1016/S0040-4039(02)02074-9

    Article  CAS  Google Scholar 

  25. Frigerio M, Santagostino M, Sputore S (1999) A user-friendly entry to 2-Iodoxybenzoic acid (IBX). J Org Chem 64:4537–4538. doi:10.1021/jo9824596

    Article  CAS  Google Scholar 

  26. More JD, Finney NS (2002) A simple and advantageous protocol for the oxidation of alcohols with \(o\)-iodoxybenzoic acid (IBX). Org Lett 4:3001–3003. doi: 10.1021/ol026427n

    Article  CAS  PubMed  Google Scholar 

  27. Karami B, Eskandari K, Ghasemi A (2012) Facile and rapid synthesis of some novel polysubstituted imidazoles by employing magnetic \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles as a high efficient catalyst. Turk J Chem 36:601–614. doi: 10.3906/kim-1112-49

    CAS  Google Scholar 

  28. Wang XB, He L, Jian TY, Ye S (2012) Cyclic phosphoric acid catalyzed one-pot, four-component synthesis of 1,2,4,5-tetrasubstituted imidazole. Chin Chem Lett 23:13–16. doi:10.1016/j.cclet.2011.09.018

  29. Reddy PP, Mukkanti K, Purandhar K (2010) \(\text{ AlPO }_{4}\) one-pot, four- component synthesis of 1,2,4,5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. RASAYAN J Chem 3:335–340

Download references

Acknowledgments

Financial support of this work by the University of Tabriz is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem D. Safa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (DOC 32882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safa, K.D., Allahvirdinesbat, M. & Namazi, H. Synthesis of novel organosilicon compounds possessing highly substituted imidazole core catalyzed by antimony trioxide. Mol Divers 19, 29–41 (2015). https://doi.org/10.1007/s11030-014-9551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9551-5

Keywords

Navigation