Skip to main content
Log in

A highly efficient group-assisted purification method for the synthesis of poly-functionalized pyrimidin-5-yl-pyrroles via one-pot four-component domino reaction

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A highly efficient, catalyst-free group-assisted purification chemical protocol for the construction of pyrimidine containing poly-functionalized pyrroles from a four-component domino reaction of acyclic-1,3-dicarbonyls or electron deficient alkynes, aromatic amines, barbituric acid and arylglyoxal hydrates under mild reaction conditions has been developed. The prominent features of the present protocol are environmentally benign, mild reaction conditions, atom economy, no column chromatography separation, easy isolation of products and excellent yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Scheme 6

References

  1. Eissen M, Metzger JO, Schmidt E, Schneidewind U (2002) 10 Years after rio-concepts on the contribution of chemistry to a sustainable development. Angew Chem Int Ed 41:414–436. doi:10.1002/anie.201103894

    Article  CAS  Google Scholar 

  2. Clark JH (1999) Green chemistry: challenges and opportunities. Green Chem 1:1–8. doi:10.1039/A807961G

    Article  CAS  Google Scholar 

  3. Beach ES, Cui Z, Anastas PT (2009) Green chemistry: a design framework for sustainability. Energy Environ Sci 2:1038–1049. doi:10.1039/B904997P

    Article  CAS  Google Scholar 

  4. Illman DL (1993) Green’ technology presents challenge to chemists. Chem Eng News 71:26–33. doi:10.1021/cen-v071n036.p026

    Google Scholar 

  5. Booth RJ, Hodges JC (1999) Solid-supported reagent strategies for rapid purification of combinatorial synthesis products. Acc Chem Res 32:18–26. doi:10.1021/ar970311n

    Article  CAS  Google Scholar 

  6. Horvath IT, Rabai J (1994) Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266:72–75. doi:10.1126/science.266.5182.72

    Article  CAS  PubMed  Google Scholar 

  7. Barrett AGM, Smith ML (1998) Impurity annihilation: a strategy for solution phase combinatorial chemistry with minimal purification. Chem Commun 21:2317–2318. doi:10.1039/A806693K

    Article  Google Scholar 

  8. Azevedo AM, Rosa PAJ, Ferreira IF, Aires-Barros MR (2009) Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol 27:240–247. doi:10.1016/j.tibtech.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  9. Kaur P, Pindi S, Wever W, Rajale T, Li G (2010) Asymmetric catalytic Strecker reaction of N-phosphonyl imines with Et\(_{2}\)AlCN using amino alcohols and BINOLs as catalysts. Chem Commun 46:4330–4332. doi: 10.1039/C0CC00287A

    Article  CAS  Google Scholar 

  10. Kaur P, Pindi S, Wever W, Rajale T, Li G (2010) Asymmetric catalytic N-phosphonyl imine chemistry: the use of primary free amino acids and Et\(_{2}\)AlCN for asymmetric catalytic strecker reaction. J Org Chem 75:5144–5150. doi: 10.1021/jo100865q

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wu J, An G, Lin S, Xie J, Zhou W, Sun H, Pan Y, Li G (2014) Solution-phase-peptide synthesis via the group-assisted purification (GAP) chemistry without using chromatography and recrystallization. Chem Commun 50:1259–1261. doi:10.1039/C3CC48509A

    Article  CAS  Google Scholar 

  12. Kaur P, Wever W, Pindi S, Milles R, Gu P, Li G (2011) The GAP chemistry for chiral N-phosphonyl imine-based Strecker reaction. Green Chem 13:1288–1292. doi:10.1039/C1GC15029D

    Article  CAS  Google Scholar 

  13. Pindi S, Wu J, Li G (2013) Design, synthesis, and applications of chiral N-2-phenyl-2-propyl sulfinyl imines for group-assisted purification (GAP) asymmetric synthesis. J Org Chem 78:4006–4012. doi:10.1021/jo400354r

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pindi S, Kaur P, Shakya G, Li G (2011) N-Phosphinyl imine chemistry (I): design and synthesis of novel N-phosphinyl imines and their application to asymmetric aza-Henry reaction. Chem Biol Drug Des 77:20–29. doi:10.1111/j.1747-0285.2010.01047.x

    Article  CAS  PubMed  Google Scholar 

  15. Ugi I (2001) Recent progress in the chemistry of multicomponent reactions. Pure Appl Chem 73:187–191

    Article  CAS  Google Scholar 

  16. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  17. Zhu J (2003) Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur J Org Chem 34:1133–1144. doi:10.1002/ejoc.200390167

    Article  Google Scholar 

  18. Sunderhaus JD, Martin SF (2009) Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem Eur J 15:1300–1308. doi:10.1002/chem.200802140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sandberg F (1951) Anaesthetic properties of some new N-substituted and N, N’-disubstituted derivatives of 5,5-diallyl-barbituric acid. Acta Physiol Scand 24:7–26

    Article  CAS  PubMed  Google Scholar 

  20. Louis B, Singh J, Shaik B, Agarwal VK, Khadikar PV (2009) QSPR study on the estimation of solubility of drug-like organic compounds: a case of barbiturates. Chem Biol Drug Des 74:190–195. doi:10.1111/j.1747-0285.2009.00844.x

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Xu XP, Wang SY, Zhou W, Ji SJ (2013) Highly efficient chemoselective synthesis of polysubstituted pyrroles via isocyanide-based multicomponent domino reaction. Org Lett 15:4246–4249. doi:10.1021/ol401976w

    Article  CAS  PubMed  Google Scholar 

  22. Feng X, Wang Q, Lin W, Dou GL, Huang ZB, Shi D (2013) Highly efficient synthesis of polysubstituted pyrroles via four-component domino reaction. Org Lett 15:2542–2545. doi:10.1021/ol4010382

    Article  CAS  PubMed  Google Scholar 

  23. Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V (2013) Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem Rev 113:3084–3213. doi:10.1021/cr300333u

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Huang X, Shen R, Zhang T (2007) Reaction of allenyl esters with sodium azide: an efficient synthesis of E-vinyl azides and polysubstituted pyrroles. J Org Chem 72:1534–1537. doi:10.1021/jo062376m

    Article  CAS  PubMed  Google Scholar 

  25. St. Cyr DJ, Arndtsen BA (2007) A new use of Wittig-type reagents as 1,3-dipolar cycloaddition precursors and in pyrrole synthesis. J Am Chem Soc 129:12366–12367. doi:10.1021/ja074330w

  26. Agarwal S, Knolker HJ (2004) A novel pyrrole synthesis. Org Biomol Chem 2:3060–3062. doi:10.1039/b412206b

    Article  CAS  PubMed  Google Scholar 

  27. Tejedor D, Lopez-Tosco S, Gonzalez-Platas J, Garcia-Tellado F (2009) From conjugated tertiary skipped diynes to chain-functionalized tetrasubstituted pyrroles. Chem Eur J 15:838–842. doi:10.1002/chem.200802262

    Article  CAS  PubMed  Google Scholar 

  28. Menichincheri M, Albanese C, Alli C, Ballinari D, Bargiotti A, Caldarelli M, Ciavolella A, Cirla A, Colombo M, Colotta F, Croci V, D’Alessio R, D’Anello M, Ermoli A, Fiorentini F, Forte B, Galvani A, Giprdano P, Isacchi A, Martina K, Molinari A, Moll JK, Montagnoli A, Orsini P, Orzi F, Pesenti E, Pillan A, Roletto F, Scolaro A, Tato M, Tibolla M, Valsasina B, Varasi M, Vianello P, Volpi D, Santocanale C, Vanotti E (2010) Cdc7 kinase inhibitors: 5-heteroaryl-3-carboxamido-2-aryl pyrroles as potential antitumor agents. 1. Lead finding. J Med Chem 53:7296–7315. doi:10.1021/jm100504d

    Article  CAS  PubMed  Google Scholar 

  29. Deslandes S, Chassaing S, Delfourne E (2009) Marine pyrrolocarbazoles and analogues: synthesis and kinase inhibition. Mar Drugs 7:754–786. doi:10.3390/md7040754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Di Santo R, Costi R, Artico M, Massa S, Lampis G, Deidda D, Pompei R (1998) Pyrrolnitrin and related pyrroles endowed with antibacterial activities against Mycobacterium tuberculosis. Bioorg Med Chem Lett 8:2931–2936. doi:10.1016/S0960-894X(98)00526-5

  31. Katritzky AR, Zhang L, Yao J, Denisko OV (2000) Preparation of 1,2-diaryl(heteroaryl)pyrroles and -3-methylpyrroles from N-allylbenzotriazole. J Org Chem 65:8074–8076. doi:10.1021/jo000885x

    Article  CAS  PubMed  Google Scholar 

  32. Dauria M, De Luca E, Mauriello G, Racioppi R, Sleiter G (1997) Photochemical substitution of halogenopyrrole derivatives. J Chem Soc Perkin Trans 1:2369–2374. doi:10.1039/A701674C

  33. Prakash KS, Nagarajan R (2013) An efficient synthesis of indol-3-yl benzonaphthyridines via copper(II) triflate-catalyzed heteroannulation. Tetrahedron Lett 54:3635–3638. doi:10.1016/j.tetlet.2013.04.106

    Article  CAS  Google Scholar 

  34. Sarma R, Borah KJ, Dommaraju Y, Prajapati D (2011) Unexpected deviation from diene behaviour of uracil amidine: towards synthesis of some pyrido[2,3-d]pyrimidine derivatives. Mol Div 15:697–705. doi:10.1007/s11030-010-9293-y

    Article  CAS  Google Scholar 

  35. Sarma R, Prajapati D (2011) Microwave-promoted efficient synthesis of dihydroquinazolines. Green Chem 13:718–722. doi:10.1039/C0GC00838A

    Article  CAS  Google Scholar 

  36. Sarma R, Sarma MM, Prajapati D (2012) Microwave-promoted catalyst- and solvent-free aza-Diels-Alder reaction of aldimines with 6-[2-(dimethylamino)vinyl]-1,3-dimethyluracil. J Org Chem 77:2018–2023. doi:10.1021/jo202346w

    Article  CAS  PubMed  Google Scholar 

  37. Bhuyan D, Sarma R, Dommaraju Y, Prajapati D (2014) Catalyst- and solvent-free, pot, atom and step economic synthesis of tetrahydroquinazolines by an aza-Diels–Alder reaction strategy. Green Chem 16:1158–1162. doi:10.1039/C3GC42389A

    Article  CAS  Google Scholar 

  38. The single crystal growth was carried in ethanol. CCDC-971917 contains the supplementary crystallographic data for compound 5u. This data can be obtained from the Cambridge Crystallographic Data Centre Via http://www.ccdc.cam.ac.uk/data_request/cif

  39. Khodaei MM, Khosropour AR, Cardel C (2008) Enamination of \(\beta \)-dicarbonyl compounds with amines. J Chin Chem Soc 55:217–221. doi: 10.1002/jccs.200800032

    CAS  Google Scholar 

  40. Li BL, Li PH, Fang XN, LI CX, Sun JL, Mo LP, Zhang ZH (2013) One-pot four-component synthesis of highly substituted pyrroles in gluconic acid aqueous solution. Tetrahedron 69:7011–7018. doi:10.1016/j.tet.2013.06.049

    Article  CAS  Google Scholar 

  41. Dhara D, Gayan KS, Khamarui S, Pandit P, Ghosh S, Maiti DK (2012) CeCl\(_{3}\cdot \)7H\(_{2}\)O catalyzed C–C and C–N bond-forming cascade cyclization with subsequent side-chain functionalization and rearrangement: a domino approach to pentasubstituted pyrrole analogues. J Org Chem 77:10441–10449. doi: 10.1021/jo301796r

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Shi D (2013) Efficient synthesis of functionalized dihydro-1H-indol-4(5H)-ones via one-pot three-component reaction under catalyst-free conditions. ACS Comb Sci 15:261–266. doi:10.1021/co4000198

  43. Riley HA, Gray AR (1935) Phenylglyoxal. Org Synth 15:67. doi:10.15227/orgsyn.015.0067

    Article  Google Scholar 

  44. Wang P, Tao W-J, Sun X-L, Liao S, Tang Y (2013) A highly efficient and enantioselective intramolecular cannizzaro reaction under TOX/Cu(II) catalysis. J Am Chem Soc 135:16849–16852. doi:10.1021/ja409859x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank CSIR, New Delhi for financial support to this work under network project. YD thanks UGC, New Delhi for the award of a senior research fellowship. We also thank the Director, CSIR-NEIST, Jorhat, for his keen interest and constant encouragement. The authors are grateful to Dr. R. K. Barua, Analytical chemistry division, CSIR-NEIST, Jorhat, Assam, India, for collecting the X-ray data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Prajapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dommaraju, Y., Prajapati, D. A highly efficient group-assisted purification method for the synthesis of poly-functionalized pyrimidin-5-yl-pyrroles via one-pot four-component domino reaction. Mol Divers 19, 173–187 (2015). https://doi.org/10.1007/s11030-014-9547-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9547-1

Keywords

Navigation