Skip to main content
Log in

A rapid access to novel and diverse 3-oxothiazolo[3,2-\(c\)]pyrimidine-8-carboxylates using multicomponent Mannich cyclisation reactions

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient synthesis of novel 3-oxotetrahyrothiazolo[3,2-\(c\)]pyrimidine-8-carboxylate derivatives was developed by reacting 4-oxothiazolidines with formaldehyde and amines under very mild conditions. A variety of novel thiazolopyrimidine carboxylates were attained rapidly by double Mannich/intramolecular cyclisation reactions in very good yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Kashyap SJ, Sharma PK, Garg VK, Dudhe R, Kumar N (2011) Review on synthesis and various biological potential of thiazolopyrimidine derivatives. J Adv Sci Res 2(3):18–24

    CAS  Google Scholar 

  2. Yıldırım M, Çelikel D, Dürüst Y, Knight DW, Kariuki BM (2014) A rapid and efficient protocol for the synthesis of novel nitrothiazolo[3,2-c]pyrimidines via microwave-mediated Mannich cyclisation. Tetrahedron 70:2122–2128. doi:10.1016/j.tet.2014.02.003

    Article  Google Scholar 

  3. Abu-Hashem AA, Youssef MM, Hussein HAR (2011) Synthesis, antioxidant, antitumor activities of some new thiazolopyrimidines, pyrrolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives. J Chin Chem Soc 58:41–48

    Article  CAS  Google Scholar 

  4. Doria G, Passarotti C, Sala R, Magrini R, Sberze P, Tibolla M, Ceserani R, Arcari G, Castello R, Toti D (1985) 7-Trans-(2-pyridylethenyl)-5H-thiazolo[3,2-\(a\)]pyrimidine-5-ones: Synthesis and pharmacological activity. Farmaco Sci 40:885–894

    CAS  PubMed  Google Scholar 

  5. Youssef MM, Amin MA (2012) Microwave assisted synthesis of some new thiazolopyrimidine, thiazolodipyrimidine and thiazolopyrimido-thiazolopyrimidine derivatives with potential antioxidant and antimicrobial activity. Molecules 17:9652–9667. doi:10.3390/molecules17089652

    Article  CAS  PubMed  Google Scholar 

  6. Youssef MSK, Ahmed RA, Abbady MS, Abdel-Mohsen SA, Omar AA (2008) Reactions of 4-(2-aminothiazole-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline. Synthesis of thiazolo[3,2-\(a\)]pyrimidine and imidazo[2,1-\(b\)]thiazole derivatives. Monatsh Chem. 139:553–559. doi: 10.1007/s00706-007-0817-9

    Article  CAS  Google Scholar 

  7. Van Laar M, Volkerts E, Verbaten M (2001) Subchronic effects of the GABA-agonist lorazepam and the 5-HT2A/2C antagonist ritanserin on driving performance, slow wave sleep and daytime sleepiness in healthy volunteers. Psychopharmacology 154:189–197. doi:10.1007/s002130000633

    Article  PubMed  Google Scholar 

  8. Tozkoparan B, Ertan M, Kelicen P, Demirdamar R (1999) Synthesis and anti-inflammatory activities of some thiazolo[3,2-\(a\)]pyrimidine derivatives. II Farmaco 54:588–593. doi: 10.1016/S0014-827X(99)00068-3

    Article  CAS  Google Scholar 

  9. Tozkoparan B, Ertan M, Krebs B, Lage M, Kelicen P, Demirdamar R (1998) Condensed heterocyclic compounds: synthesis and anti-inflammatory activity of novel thiazolo[3,2-\(a\)]pyrimidines. Archiv Der Pharmazie 331:201–206. doi:10.1002/(SICI)1521-4184(199806)331:6<201:AID-ARDP201>3.0.CO;2-T

  10. Balkan A, Uma S, Ertan M, Wiegrebe W (1992) Thiazolo-[3,2-\(a\)]pyrimidine derivatives as calcium antagonists. Pharmazie 47:687–688

    CAS  PubMed  Google Scholar 

  11. Danel K, Pedersen EB, Nielsen C (1998) Synthesis and anti-HIV-1 activity of novel 2,3-dihydro-7H-thiazolo[3,2-\(a\)]pyrimidin-7-ones. J Med Chem 41:191–198. doi: 10.1021/jm970443m

    Article  CAS  PubMed  Google Scholar 

  12. Nehad AA, Nermien MS, Ashraf MM, Abdulla MM (2007) Synthesis, analgesic, and antiparkinsonian profiles of some pyridine, pyrazoline, and thiopyrimidine derivatives. Monatsh Chem 138:715–724. doi:10.1007/s00706-007-0656-8

    Article  Google Scholar 

  13. Ahmed FAS, Abdulla MM, Amr AE, Azza AH (2007) Synthesis, reactions, and antiarrhythmic activity of substituted heterocyclic systems using 5-chloroanisic acid as starting material. Monatsh Chem 138:1019–1027. doi:10.1007/s00706-007-0701-7

    Article  Google Scholar 

  14. Amr AE, Abdulla MM (2002) Synthesis and pharmacological screening of some new pyrimidine and cyclohexenone fused steroidal derivatives. Ind J Heterocycl Chem 12:129–134

    CAS  Google Scholar 

  15. Amr AE, Ashraf MM, Salwa FM, Nagla AA, Hammam AG (2006) Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg Med Chem 14:5481–5488. doi:10.1016/j.bmc.2006.04.045

    Article  CAS  PubMed  Google Scholar 

  16. Amr AE, Hegab MI, Ibrahim AA, Abdalah MM (2003) Synthesis and reactions of some fused oxazinone, pyrimidinone, thiopyrimidinone, and triazinone derivatives with a thiophene ring as analgesic, anticonvulsant, and antiparkinsonian agents. Monatsh Chem 134:1395–1409. doi:10.1007/s00706-003-0051-z

    Article  CAS  Google Scholar 

  17. Amr AE, Nermien MS, Abdulla MM (2007) Synthesis, reactions, and anti-inflammatory activity of heterocyclic systems fused to a thiophene moiety using citrazinic acid as synthon. Monatsh Chem 138:699–707. doi:10.1007/s00706-007-0651-0

    Article  CAS  Google Scholar 

  18. Selvam TP, Karthick V, Kumar PV, Ali MA (2012) Synthesis and structure-activity relationship study of 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2\(H\)-thiazolo[3,2-\(a\)]pyrimidin-3(7\(H\))-one derivatives as anticancer agents. Drug Discov Ther 6:198–204. doi: 10.5582/ddt.2012.v6.4.198

    CAS  PubMed  Google Scholar 

  19. Childress SJ, McKee RL (1951) Thiazolopyrimidines. J Am Chem Soc 73:3862–3864. doi:10.1021/ja01152a090

    Article  CAS  Google Scholar 

  20. Liu J, Patch RJ, Schubert C, Player MR (2005) Single-step syntheses of 2-amino-7-chlorothiazolo[5,4-\(d\)]pyrimidines: Intermediates for bivalent thiazolopyrimidines. J Org Chem 70:10194–10197. doi: 10.1021/jo0517702

    Article  CAS  PubMed  Google Scholar 

  21. Singh B, Guru SK, Kour S, Jain SK, Sharma R, Sharma PR, Singh SK, Bhushan S, Bharate SB, Vishwakarma RA (2013) Synthesis, antiproliferative and apoptosis-inducing activity of thiazolo[5,4-d]pyrimidines. Eur J Med Chem 70:864–874. doi:10.1016/j.ejmech.10.039

    Article  CAS  PubMed  Google Scholar 

  22. Baxter A, Cooper A, Kinchin E, Moakes K, Unitt J, Wallace A (2006) Hit-to-Lead studies: The discovery of potent, orally bioavailable thiazolopyrimidine CXCR2 receptor antagonists. Bioorg Med Chem Lett 16:960–963. doi:10.1016/j.bmcl.2005.10.091

    Article  CAS  PubMed  Google Scholar 

  23. Hunt F, Austin C, Austin R, Bonnert R, Cage P, Christie J, Christie M, Dixon C, Hill S, Jewell R, Martin I, Robinson D, Willis P (2007) SAR studies on thiazolo[4,5-\(d\)]pyrimidine based CXCR2 antagonists involving a novel tandem displacement reaction. Bioorg Med Chem Lett 17:2731–2734. doi: 10.1016/j.bmcl.2007.02.080

    Article  CAS  PubMed  Google Scholar 

  24. Arya K, Dandia A (2007) Synthesis of biologically important novel fluorinated spiroheterocycles under microwaves catalyzed by montmorillonite KSF. J Fluorine Chem 128:224–231. doi:10.1016/j.jfluchem.2006.12.003

    Article  CAS  Google Scholar 

  25. Luthra PM, Mishra CB, Jha PK, Barodia SK (2010) Synthesis of novel 7-imino-2-thioxo-3,7-dihydro-2\(H\)-thiazolo[4,5-\(d\)]pyrimidine derivatives as adenosine \(\text{ A }_{2A}\) receptor antagonists. Bioorg Med Chem Lett 20:1214–1218. doi: 10.1016/j.bmcl.2009.11.133

    Article  CAS  PubMed  Google Scholar 

  26. Gill N, Ralhan NK, Sachdev HS, Narang KS (1961) Studies in Thiazolopyrimidines. I. a case of Michael retrogression. J Org Chem 26:968–969. doi:10.1021/jo01062a620

    Article  CAS  Google Scholar 

  27. Djerrari B, Essassi EM, Fifani J, Garrigues B (2002) Dehydroacetic acid precursor of a novel pyridopyrimidine, thiazolo-pyrimidine and pyridone. Comp Rend Chim 5:177–183. doi:10.1016/S1631-0748(02)01363-2

    Article  CAS  Google Scholar 

  28. Mohamed SF, Flefel EM, Abd El-Galil AE, Abd El-Shafy DN (2010) Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur J Med Chem 45:1494–1501. doi:10.1016/j.ejmech.12.057

    Article  CAS  PubMed  Google Scholar 

  29. Hua J, Wang Y, Wei X, Wu X, Chen G, Cao G, Shen X, Zhang X, Tang Q, Liang G, Li X (2013) Synthesis and biological evaluation of novel thiazolidinone derivatives as potential anti-inflammatory agents. Eur J Med Chem 64:292–301. doi:10.1016/j.ejmech.2013.04.010

    Article  Google Scholar 

  30. Moty Abdel SG, Hussein MA, Abdel Aziz SA, Abou-Salim MA (2014) Design and synthesis of some substituted thiazolo[3,2-a]pyrimidine derivatives of potential biological activities. Saudi Pharm J. doi:10.1016/j.jsps.2013.12.016

    Google Scholar 

  31. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Hooda A, Parsons RB (2014) Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines. Bioorg Med Chem 22:906–916. doi:10.1016/j.bmc.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  32. Al-Omary FAM, Hassan GS, El-Messery SM, El-Subbagh HI (2012) Substituted thiazoles V. Synthesis and antitumor activity of novel thiazolo[2,3-\(b\)]quinazoline and pyrido[4,3-\(d\)]thiazolo[3,2-\(a\)]pyrimidine analogues. Eur J Med Chem 47:65–72. doi: 10.1016/j.ejmech.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  33. Rajanarendar E, Ramakrishna S, Rama Murthy K (2012) Synthesis of novel isoxazolyl bis-thiazolo[3,2-\(a\)]pyrimidines. Chin Chem Lett 23:899–902. doi: 10.1016/j.cclet.2012.06.029

    Article  CAS  Google Scholar 

  34. Heravi MM, Beheshtiha YS, Oskooie HA, Salarkia M, Tajbakhsh M (1998) Synthesis of some new 3,7-disubstituted thiazolo[3,2-\(c\)]pyrimidin-5-one. Indian J Chem B 37:694–696

  35. Scharer D, Jindra V, Bringhen AO, Burger U (1991) Reaction of the 5-Azoniafulvene Ion with Enamines: a new approach to Pyrrolizines. Helv Chim Acta 74:1817–1822

    Article  Google Scholar 

  36. Huang PJJ, Cameron TS, Jha A (2009) Novel synthesis of 2,2-dialkyl-3-dialkylamino-2,3-dihydro-1\(H\)-naphtho[2,1-\(b\)]pyrans. Tetrahedron Lett 50:51–54. doi:10.1016/j.tetlet.2008.10.083

  37. Vincze Z, Nemes P (2011) Synthesis and cyclizations of 1-azapolyene derivatives. Tetrahedron 67:3380–3387. doi:10.1016/j.tet.2011.03.058

  38. Stojanovic M, Markovic R, Kleinpeter E, Stojanovic MB (2011) endo-Mode cyclizations of vinylogous \(N\)-acyliminium ions as a route to the synthesis of condensed thiazolidines. Tetrahedron 67:9541–9554. doi: 10.1016/j.tet.2011.10.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project work was financially supported by Abant Izzet Baysal University, Directorate of Research Projects Commission (BAP grant no. 2013.03.03.600. We also thank to Prof.Dr.Hakan Göker for all precise NMR analyses and to Assoc.Prof.Dr.Murat Şüküroğlu for HRMS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Yıldırım.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldırım, M., Çelikel, D. A rapid access to novel and diverse 3-oxothiazolo[3,2-\(c\)]pyrimidine-8-carboxylates using multicomponent Mannich cyclisation reactions. Mol Divers 19, 1–13 (2015). https://doi.org/10.1007/s11030-014-9546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9546-2

Keywords

Navigation