Skip to main content
Log in

An in silico protocol for identifying mTOR inhibitors from natural products

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The mammalian target of rapamycin (mTOR) is an anti-cancer target. In this study, we propose an in silico protocol for identifying mTOR inhibitors from the ZINC natural product database. First, a three-dimensional quantitative structure–activity relationship pharmacophore model was built based on known mTOR inhibitors. The model was validated with an external test set, Fischer’s randomization method, a decoy set and pharmacophore mapping conformation testing. The results showed that the model can predict the mTOR inhibition activity of the tested compounds. Virtual screening was performed based on the best pharmacophore model, and the results were then filtered using a molecular docking approach. In addition, molecular mechanics/generalized born surface area analysis was used to refine the selected candidates. The top 20 natural products were selected as potential mTOR inhibitors, and their structural scaffolds could serve as building blocks in designing drug-like molecules for mTOR inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223. doi:10.1038/nature12122

    Article  PubMed  CAS  Google Scholar 

  2. Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27:2278–2287. doi:10.1200/JCO.2008.20.0766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Zeng Z, Sarbassov DD, Samudio IJ, Yee KW, Munsell MF, Jackson CE, Giles FJ, Sabatini DM, Andreeff M, Konopleva M (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109:3509–3512. doi:10.1182/blood-2006-06-030833

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N (2006) mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 94:195–199. doi:10.1038/sj.bjc.6602902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688. doi:10.1038/nrd2062

    Article  PubMed  CAS  Google Scholar 

  6. Choo AY, Yoon S-O, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 105:17414–17419. doi:10.1073/pnas.080913610

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Borders EB, Bivona C, Medina PJ (2010) Mammalian target of rapamycin: biological function and target for novel anticancer agents. Am J Health Syst Pharm 67:2095–2106. doi:10.2146/ajhp100020

    Article  PubMed  CAS  Google Scholar 

  8. Wang L, Chen L, Liu ZH, Zheng MH (2014) Predicting mTOR inhibitors with a classifier using recursive partitioning and naïve Bayesian approaches. PLoS One 9:e95221. doi:10.1371/journal.pone.0095221.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27:5527–5541. doi:10.1038/onc.2008.247

    Article  PubMed  CAS  Google Scholar 

  10. Roulin D, Cerantola Y, Dormond-Meuwly A, Demartines N, Dormond O (2010) Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. Mol Cancer 9:57. doi:10.1186/1476-4598-9-57

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang YJ, Duan Y, Zheng XF (2011) Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today 16:325–331. doi:10.1016/j.drudis.2011.02.008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7:e1000038. doi:10.1371/journal.pbio.1000038

    Article  PubMed Central  Google Scholar 

  13. Garcia-Echeverria C (2010) Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment. Bioorg Med Chem Lett 20:4308–4312. doi:10.1016/j.bmcl.2010.05.099

    Article  PubMed  CAS  Google Scholar 

  14. Shen J, Xu X, Cheng F, Liu H, Luo X, Shen J, Chen K, Zhao W, Shen X, Jiang H (2003) Virtual screening on natural products for discovering active compounds and target information. Curr Med Chem 10:2327–2342. doi:10.2174/0929867033456729

    Article  PubMed  CAS  Google Scholar 

  15. Rollinger JM, Stuppner H, Langer T (2008) Virtual screening for the discovery of bioactive natural products. Prog Drug Res 65:211–249. doi:10.1007/978-3-7643-8117-2_6

    Article  PubMed  CAS  Google Scholar 

  16. Kirchmair J, Distinto S, Markt P, Schuster D, Spitzer GM, Liedl KR, Wolber G (2009) How to optimize shape-based virtual screening: choosing the right query and including chemical information. J Chem Inf Model 49:678–692. doi:10.1021/ci8004226

    Article  PubMed  CAS  Google Scholar 

  17. Zhao W, Gu Q, Wang L, Ge H, Li J, Xu J (2011) Three-dimensional pharmacophore modeling of liver-X receptor agonists. J Chem Inf Model 51:2147–2155. doi:10.1021/ci100511v

    Article  PubMed  CAS  Google Scholar 

  18. Sakkiah S, Thangapandian S, John S, Kwon YJ, Lee KW (2010) 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors. Eur J Med Chem 45:2132–2140. doi:10.1016/j.ejmech.2010.01.016

    Article  PubMed  CAS  Google Scholar 

  19. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919. doi:10.1016/S1097-2765(05)00089-4

    Article  PubMed  CAS  Google Scholar 

  20. Zask A, Verheijen JC, Curran K, Kaplan J, Richard DJ, Nowak P, Malwitz DJ, Brooijmans N, Bard J, Svenson K, Lucas J, Toral-Barza L, Zhang WG, Hollander I, Gibbons JJ, Abraham RT, Ayral-Kaloustian S, Mansour TS, Yu K (2009) ATP-competitive inhibitors of the mammalian target of rapamycin: design and synthesis of highly potent and selective pyrazolopyrimidines. J Med Chem 52:5013–5016. doi:10.1021/jm900851f

    Article  PubMed  CAS  Google Scholar 

  21. Zask A, Kaplan J, Verheijen JC, Richard DJ, Curran K, Brooijmans N, Bennett EM, Toral-Barza L, Hollander I, Ayral-Kaloustian S, Yu K (2009) Morpholine derivatives greatly enhance the selectivity of mammalian target of rapamycin (mTOR) inhibitors. J Med Chem 52:7942–7945. doi:10.1021/jm901415x

    Article  PubMed  CAS  Google Scholar 

  22. Menear KA, Gomez S, Malagu K, Bailey C, Blackburn K, Cockcroft X-L, Ewen S, Fundo A, Gall AL, Hermann G (2009) Identification and optimisation of novel and selective small molecular weight kinase inhibitors of mTOR. Bioorg Med Chem Lett 19:5898–5901. doi:10.1016/j.bmcl.2009.08.069

    Article  PubMed  CAS  Google Scholar 

  23. Li H, Sutter J, Hoffmann R (2000) HypoGen: an automated system for generating 3D predictive pharmacophore models. Pharmacophore Percept Dev Use Drug Des 2:171

  24. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201. doi:10.1093/nar/gkl999

  25. Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 4:691–699. doi:10.1038/nchembio.117

  26. Klein S, Levitzki A (2009) Targeting the EGFR and the PKB pathway in cancer. Curr Opin Cell Biol 21:185–193. doi:10.1016/j.ceb.2008.12.006

    Article  PubMed  CAS  Google Scholar 

  27. Fan Q-W, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D, Shokat KM, Weiss WA (2006) A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9:341–349. doi:10.1016/j.ccr.2006.03.029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Nagarajan S, Choo H, Cho YS, Oh K-S, Lee BH, Shin KJ, Pae AN (2010) IKK \(\beta \) inhibitors identification part II: ligand and structure-based virtual screening. Bioorg Med Chem 18:3951–3960. doi: 10.1016/j.bmc.2010.04.030

    Article  PubMed  CAS  Google Scholar 

  29. Tanneeru K, Guruprasad L (2012) Ligand-based 3-D pharmacophore generation and molecular docking of mTOR kinase inhibitors. J Mol Model 18:1611–1624. doi:10.1007/s00894-011-1184-3

    Article  PubMed  CAS  Google Scholar 

  30. Cheng H, Bagrodia S, Bailey S, Edwards M, Hoffman J, Hu Q, Kania R, Knighton DR, Marx MA, Ninkovic S, Sun S, Zhang E (2010) Discovery of the highly potent PI3K/mTOR dual inhibitor PF-04691502 through structure based drug design. Med Chem Commun 1:139–144. doi:10.1039/c0md00072h

  31. Ge H, Wang Y, Li C, Chen N, Xie Y, Xu M, He Y, Gu X, Wu R, Gu Q, Zeng L, Xu J (2013) Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing. J Chem Inf Model 53:2757–2764. doi:10.1021/ci400391s

    Article  PubMed  CAS  Google Scholar 

  32. Barakat KH, Jordheim LP, Perez-Pineiro R, Wishart D, Dumontet C, Tuszynski JA (2012) Virtual screening and biological evaluation of inhibitors targeting the XPA–ERCC1 interaction. PLoS One 7:e51329. doi:10.1371/journal.pone.0051329

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Mukherjee P, Shah F, Desai P, Avery M (2011) Inhibitors of SARS-3CLpro: virtual screening, biological evaluation, and molecular dynamics simulation studies. J Chem Inf Model 51:1376–1392. doi:10.1021/ci1004916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Shen J, Tan C, Zhang Y, Li X, Li W, Huang J, Shen X, Tang Y (2010) Discovery of potent ligands for estrogen receptor beta by structure-based virtual screening. J Med Chem 53:5361–5365. doi:10.1021/jm100369g

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a Grant from the National High Technology Research and Development Program of China (863 Program; No. 2012AA020307), Guangdong Recruitment Program of Creative Research Groups, the National Natural Science Foundation of China (Nos. 81001372, 81173470), and the Special Funding Program for the National Supercomputer Center in Guangzhou (2012Y2-00048/2013Y2-00045, 201200000037).

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Gu or Jun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (DOC 293 kb)

ESM 2 (TIF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, L., Gu, Q. et al. An in silico protocol for identifying mTOR inhibitors from natural products. Mol Divers 18, 841–852 (2014). https://doi.org/10.1007/s11030-014-9543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9543-5

Keywords

Navigation