Skip to main content
Log in

Autogrid-based clustering of kinases: selection of representative conformations for docking purposes

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The selection of the most appropriate protein conformation is a crucial aspect in molecular docking experiments. In order to reduce the errors arising from the use of a single protein conformation, several authors suggest the use of several tridimensional structures for the target. However, the selection of the most appropriate protein conformations still remains a challenging goal. The protein 3D-structures selection is mainly performed based on pairwise root-mean-square-deviation (RMSD) values computation, followed by hierarchical clustering. Herein we report an alternative strategy, based on the computation of only two atom affinity map for each protein conformation, followed by multivariate analysis and hierarchical clustering. This methodology was applied on seven different kinases of pharmaceutical interest. The comparison with the classical RMSD-based strategy was based on cross-docking of co-crystallized ligands. In the case of epidermal growth factor receptor kinase, also the docking performance on 220 known ligands were evaluated, followed by 3D-QSAR studies. In all the cases, the herein proposed methodology outperformed the RMSD-based one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. At this stage, the RMSD value should be used to compare docked and real poses only if the docking studies were performed on a single protein conformation.

References

  1. Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, Cunningham A, DiOrio C, Doty J, Morin MJ, Moyer MP, Neveu M, Pollack VA, Pustilnik LR, Reynolds MM, Sloan D, Theleman A, Miller P (1997) Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 57:4838–4848

    CAS  PubMed  Google Scholar 

  2. Zimmermann Jr, Buchdunger E, Mett H, Meyer T, Lydon NB (1997) Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives. Bioorg Med Chem Lett 7:187–192. doi:10.1016/S0960-894X(96)00601-4

  3. Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8:161–173. doi:10.1677/erc.0.0080161

    Article  CAS  PubMed  Google Scholar 

  4. Porter AC, Vaillancourt RR (1998) Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 17:1343–1352

    Article  CAS  PubMed  Google Scholar 

  5. Srinivasan D, Plattner R (2006) Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 66:5648–5655. doi:10.1158/0008-5472.CAN-06-0734

    Article  CAS  PubMed  Google Scholar 

  6. Fu JY, Bian ML, Jiang Q, Zhang CM (2007) Roles of aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5:1–10. doi:10.1158/1541-7786.MCR-06-0208

    Article  CAS  PubMed  Google Scholar 

  7. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks N, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Siegler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954. doi:10.1038/nature00766

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24:1770–1783. doi:10.1200/JCO.2005.03.7689

    Article  CAS  PubMed  Google Scholar 

  9. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16. doi:10.1016/j.gene.2005.10.018

    Article  CAS  PubMed  Google Scholar 

  10. Yu JH, Ustach C, Kim HRC (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 36:49–59

    Article  CAS  PubMed  Google Scholar 

  11. Bradham C, McClay DR (2006) p38 MAPK in development and cancer. Cell Cycle 5:824–828. doi:10.4161/cc.5.8.2685

    Article  CAS  PubMed  Google Scholar 

  12. Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, Sproat G, Swann R, Gray N, Ryan A, Jurgensmeier JM, Womack C (2010) Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 16:3548–3561. doi:10.1158/1078-0432.CCR-09-2797

  13. Zhang JM, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39. doi:10.1038/nrc2559

    Article  PubMed  Google Scholar 

  14. Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5:203–220. doi:10.1158/1541-7786.MCR-06-0404

    Article  CAS  PubMed  Google Scholar 

  15. Ellis LM (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin N 18:1007–1021. doi:10.1016/j.hoc.2004.06.002

    Article  Google Scholar 

  16. Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R (2003) FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist 8:303–306. doi:10.1634/theoncologist.8-4-303

    Article  CAS  PubMed  Google Scholar 

  17. Morabito A, Piccirillo MC, Falasconi F, De Feo G, Del Giudice A, Bryce J, Di Maio M, De Maio E, Normanno N, Perrone F (2009) Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist 14:378–390. doi:10.1634/theoncologist.2008-0261

    Article  CAS  PubMed  Google Scholar 

  18. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140. doi:10.1158/1535-7163.MCT-08-0013

    Article  CAS  PubMed  Google Scholar 

  19. Anwer Z, Gupta SP (2013) A QSAR study on some series of anticancer tyrosine kinase inhibitors. Med Chem 9:203–212. doi:10.2174/1573406411309020005

    Article  CAS  PubMed  Google Scholar 

  20. Marzaro G, Tonus F, Brun P, Castagliuolo I, Guiotto A, Chilin A (2011) The importance of descriptor-based clusterization in QSAR models development: tyrosine kinases inhibitors as a key study. Mol Inf 30:721–732. doi:10.1002/minf.201100036

    CAS  Google Scholar 

  21. Marzaro G, Chilin A, Guiotto A, Uriarte E, Brun P, Castagliuolo I, Tonus F, Gonzalez-Diaz H (2011) Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur J Med Chem 46:2185–2192. doi:10.1016/j.ejmech.2011.02.072

    Article  CAS  PubMed  Google Scholar 

  22. Zhu LL, Hou TJ, Chen LR, Xu XJ (2001) 3D QSAR analyses of novel tyrosine kinase inhibitors based on pharmacophore alignment. J Chem Inf Comp Sci 41:1032–1040. doi:10.1021/ci010002i

    Article  CAS  Google Scholar 

  23. Zhou SY, Li YY, Hou TJ (2013) Feasibility of using molecular docking-based virtual screening for searching dual target kinase inhibitors. J Chem Inf Model 53:982–996. doi:10.1021/ci400065e

    Article  CAS  PubMed  Google Scholar 

  24. Choowongkomon K, Sawatdichaikul O, Songtawee N, Limtrakul J (2010) Receptor-based virtual screening of EGFR kinase inhibitors from the NCI diversity database. Molecules 15:4041–4054. doi:10.3390/molecules15064041

    Article  CAS  PubMed  Google Scholar 

  25. Choi H, Park HJ, Shin JC, Ko HS, Lee JK, Lee S, Park H, Hong S (2012) Structure-based virtual screening approach to the discovery of p38 MAP kinase inhibitors. Bioorg Med Chem Lett 22:2195–2199. doi:10.1016/j.bmcl.2012.01.104

    Article  CAS  PubMed  Google Scholar 

  26. Barril X, Morley SD (2005) Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 48:4432–4443. doi:10.1021/jm048972v

    Article  CAS  PubMed  Google Scholar 

  27. Merlitz H, Wenzel W (2004) High throughput in-silico screening against flexible protein receptors. Lect Notes Comput Sci 3045:465–472

    Article  Google Scholar 

  28. Conconi MT, Marzaro G, Urbani L, Zanusso I, Di Liddo R, Castagliuolo I, Brun P, Tonus F, Ferrarese A, Guiotto A, Chilin A (2013) Quinazoline-based multi-tyrosine kinase inhibitors: synthesis, modeling, antitumor and antiangiogenic properties. Eur J Med Chem 67:373–383. doi:10.1016/j.ejmech.2013.06.057

  29. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aid Mol Des 16: 151–166

  30. Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13:505–524. doi:10.1002/jcc.540130412

    Article  CAS  Google Scholar 

  31. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46:34–40. doi:10.1002/prot.10028

    Article  CAS  PubMed  Google Scholar 

  32. Leis S, Zacharias M (2011) Efficient inclusion of receptor flexibility in grid-based protein-ligand docking. J Comput Chem 32: 3433–3439. doi:10.1002/jcc.21923

  33. Leis S, Zacharias M (2012) ReFlexIn: a flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease. Plos One 7:e48008. doi:10.1371/journal.pone.0048008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Marzaro G, Guiotto A, Borgatti M, Finotti A, Gambari R, Breveglieri G, Chilin A (2013) Psoralen derivatives as inhibitors of NF-kappa B/DNA interaction: synthesis, molecular modeling, 3D-QSAR, and biological evaluation. J Med Chem 56:1830–1842. doi:10.1021/jm3009647

    Article  CAS  PubMed  Google Scholar 

  35. http://www.rcsb.org/. Accessed 30 Sept 2013

  36. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  37. Chilin A, Conconi MT, Marzaro G, Guiotto A, Urbani L, Tonus F, Parnigotto P (2010) Exploring epidermal growth factor receptor (EGFR) inhibitor features: the role of fused dioxygenated rings on the quinazoline scaffold. J Med Chem 53:1862–1866. doi:10.1021/jm901338g

    Article  CAS  PubMed  Google Scholar 

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Rakotomalala R (2005) TANAGRA: un logiciel gratuit pour l’enseignement et la recherche. Actes de EGC’2005 RNTI-E-3 2:697–702

    Google Scholar 

  40. Marvin v, Program B; ChemAxon: Budapest, Hungary; www.chemaxon.com/products. Accessed 10 Jan 2013

  41. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33. doi:10.1186/1758-2946-3-33

    Article  PubMed Central  PubMed  Google Scholar 

  42. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511. doi:10.1021/jm020406h

    Article  CAS  PubMed  Google Scholar 

  43. https://www.ebi.ac.uk/chembl/sarfari/kinasesarfari. Accessed 30 Sept 2013

  44. Tosco P, Balle T (2011) Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J Mol Model 17:201–208. doi:10.1007/s00894-010-0684-x

    Article  PubMed  Google Scholar 

  45. Pastor M, Cruciani G, Clementi S (1997) Smart region definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure-activity relationships. J Med Chem 40:1455–1464. doi:10.1021/jm9608016

    Article  CAS  PubMed  Google Scholar 

  46. Baroni M, Clementi S, Cruciani G, Costantino G, Riganelli D, Oberrauch E (1992) Predictive ability of regression-models. 2. Selection of the best predictive pls model. J Chemometr 6: 347–356. doi:10.1002/cem.1180060605

Download references

Acknowledgments

The present work has been carried out with the financial support of the University of Padova ‘Progetto Giovani Studiosi 2012’ to G.M. A.F. thanks financial supports from the University of Padova for a PhD student grant; G.M. thanks financial support from the University of Padova for a post-doc senior grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Marzaro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 426 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzaro, G., Ferrarese, A. & Chilin, A. Autogrid-based clustering of kinases: selection of representative conformations for docking purposes. Mol Divers 18, 611–619 (2014). https://doi.org/10.1007/s11030-014-9524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9524-8

Keywords

Navigation