Skip to main content
Log in

An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Novel analogs of 2-pyridone-3-carboxylic acids 4al have been prepared by the three-component reaction of 3-formyl chromone, Meldrum’s acid, and primary amines in the presence of a catalytic amount of diammonium hydrogen phosphate in water. Good-to-high yields, easy work-up, and an environmentally friendly profile are the advantages of this method for the synthesis of 2-pyridone-3-carboxylic acid derivatives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grontas WC, Stanga MA, Brobaker MJ, Huang TL, Moi ML, Carroll RT (1985) Substituted 2-pyrones, 2-pyridones, and other congeners of elasnin as potential agents for the treatment of chronic obstructive lung diseases. J Med Chem 28:1106–1109. doi:10.1021/jm00146a023

    Article  Google Scholar 

  2. Nagarajan M, Xiao XS, Antony S, Kohlhagen G, Pommier Y, Cushman M (2003) Design, synthesis, and biological evaluation of indenoisoquinoline topoisomerase I inhibitors featuring polyamine side chains on the lactam nitrogen. J Med Chem 46:5712–5724. doi:10.1021/jm030313f

    Article  CAS  PubMed  Google Scholar 

  3. Cox RJ, O’Hagan DJ (1991) Synthesis of isotopically labelled 3-amino-2-phenylpropionic acid and its role as a precursor in the biosynthesis of tenellin and tropic acid. Chem Soc Perkin Trans 1:2537–2540. doi:10.1039/P19910002537

    Article  Google Scholar 

  4. Kozikowski AP, Campiani G, Sun LQ, Wang S, Saxena A, Doctor BP (1996) Identification of a more potent analogue of the naturally occurring alkaloid huperzine A. predictive molecular modeling of its interaction with AChE. J Am Chem Soc 118:11357–11362. doi:10.1021/ja9622822

    Article  CAS  Google Scholar 

  5. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    CAS  PubMed  Google Scholar 

  6. Liu JS, Zhu YL, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF (1986) The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 64:837–839. doi:10.1139/v86-137

    Article  CAS  Google Scholar 

  7. Jayasinghe L, Abbas HK, Jacob MR, Herath WHMW, Nanayakkara NPD (2006) \(N\)-Methyl-4-hydroxy-2-pyridinone analogues from fusarium oxysporum. J Nat Prod 69:439–442. doi: 10.1021/np050487v

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Torres M, Gil S, Parra M (2005) New synthetic methods to 2-pyridone rings. Curr Org Chem 9:1757–1779. doi:10.2174/138527205774610886

    Article  CAS  Google Scholar 

  9. Medina-Franco JL, Martínez-Mayorga K, Juárez-Gordiano C, Castillo R (2007) Pyridin-2(1\(H)\)-ones: a promising class of HIV-1 non-nucleoside reverse transcriptase inhibitors. ChemMedChem 2:1141–1147. doi:10.1002/cmdc.200700054

  10. Ciufolini MA, Chan BK (2007) Methodology for the synthesis of pyridines and pyridones: development and applications. Heterocycles 74:101–124. doi:10.3987/REV-07-SR(W)4

    Article  CAS  Google Scholar 

  11. Kumarihamy M, Khan SI, Jacob M, Tekwani BL, Duke SO, Ferreira D, Nanayakkara NPD (2012) Antiprotozoal and antimicrobial compounds from the plant pathogen Septoria pistaciarum. J Nat Prod 75:883–889. doi:10.1021/np200940b

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Nordmann J, Breuers N, Mueller TJJ (2013) Efficient consecutive four-component synthesis of 5-acylpyrid-2-ones initiated by copper-free alkynylation. Eur J Org Chem 2013:4303–4310. doi:10.1002/ejoc.201300235

    Article  CAS  Google Scholar 

  13. Schaefer CJ, Ruhrmund DW, Pan L, Seiwert SD, Kossen K (2011) Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev 120:85–97. doi:10.1183/09059180.00001111

    Article  Google Scholar 

  14. Mirkovic SA-ML, Seymour AF (2002) Attenuation of cardiac fibrosis by pirfenidone and amiloride in DOCA-salt hypertensive rats. J Pharmacol 135:961–968. doi:10.1038/sj.bjp.0704539

    CAS  Google Scholar 

  15. Gadekar SM (1976) DE Patent 2555411. Chem Abstr 85:198163b

  16. Otsubo K, Morita S, Uchida M, Yamasaki K, Kanbe T, Shimizu T (1991) Synthesis and antiulcer activity of optical isomers of 2-(4-chlorobenzoylamino)-3-[2(1h)-quinolinon-4-yl]propionic acid (rebamipide). Chem Pharm Bull 39:2906–2909. doi:10.1248/cpb.39.2906

    Article  CAS  PubMed  Google Scholar 

  17. Gupta AK, Kohli Y (2003) In vitro susceptibility testing of ciclopirox, terbinafineketoconazole and itraconazole against dermatophytes and nondermatophytes, and in vitro evaluation of combination antifungal activity. Br J Dermatol 149:296–305. doi:10.1046/j.1365-2133.2003.05418.x

    Article  CAS  PubMed  Google Scholar 

  18. Elbein AD, Molyneux RJ (1981) In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 5. Wiley, New York, pp 1–54

    Google Scholar 

  19. Jones G, Stanforth SP (1997) The Vilsmeier reaction of fully conjugated carbocycles and heterocycles. In: Paquette LA (ed) In organic reactions, vol 49. Wiley, New York, pp 1–330

    Google Scholar 

  20. Tanaka K, Fujiwara T, Urbanczyk-Lipkowska Z (2002) Highly enantioselective photocyclization of 1-alkyl-2-pyridones to \(\beta \)-lactams in inclusion crystals with optically active host compounds. Org Lett 4:3255–3257. doi: 10.1021/ol026497u

    Article  CAS  PubMed  Google Scholar 

  21. Angibaud PR, Venet MG, Filliers W, Broeckx R, Ligny YA, Muller P, Poncelet VS, End DW (2004) Synthesis routes towards the Farnesyl protein transferase inhibitor ZARNESTRA. Eur J Org Chem 2004:479–486. doi:10.1002/ejoc.200300538

    Article  Google Scholar 

  22. Casamitjana N, Lopez V, Jorge A, Bosch J, Molins E, Roig A (2000) Tetrahedron 56:4027–4042. doi:10.1016/S0040-4020(00)00317-3

    Article  CAS  Google Scholar 

  23. Fujita R, Watanabe K, Ikeura W, Ohtake Y, Hongo H (2000) Novel synthesis of tetrahydro-2(1\(H)\)-quinolones using Diels–Alder reactions of 1-arylsulfonyl-2(1\(H)\)-pyridones acting as dienophiles. Heterocycles 53:2607–2610. doi: 10.3987/COM-00-9020

    Article  CAS  Google Scholar 

  24. Fujita R, Watanabe K, Ikeur W, Ohtake Y, Hongo H, Harigaya Y, Matsuzaki H (2001) Novel synthesis of tetrahydro-2(1H)-quinolones using Diels–Alder reactions of 1-arylsulfonyl- 2(1H)-pyridones having an electron-withdrawing group. Tetrahedron 57:8841–8850. doi:10.1016/S0040-4020(01)00893-6

    Article  CAS  Google Scholar 

  25. Aubert C, Betschmann P, Eichberg MJ, Gandon V, Heckrodt TJ, Lehmann J, Malacria M, Masjost B, Paredes E, Vollhardt KPC, Whitener GD (2007) Cobalt-mediated [2 \(+\) 2 \(+\) 2] cycloaddition versus C–H and N–H activation of pyridones and pyrazinones with alkynes: an experimental study. Chem Eur J 13:7443–7465. doi: 10.1002/chem.200601823

    Article  CAS  PubMed  Google Scholar 

  26. Jayasinghe L, Abbas HK, Jacob MR, Herath WHMW, Nanayakkara NPD (2006) \(N\)-methyl-4-hydroxy-2-pyridinone analogues from fusariumoxysporum. J Nat Prod 69:439–442. doi: 10.1021/np050487v

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Li Q, Mitscher LA, Shen LL (2000) The 2-pyridone antibacterial agents: bacterial topoisomerase inhibitors. Med Res Rev 20:231–293

    Article  CAS  PubMed  Google Scholar 

  28. Josein H, KoS B, Bom D, Curran DP (1998) A general synthetic approach to the (20 S)-camptothecin family of antitumor agents by a regiocontrolled cascade radical cyclization of aryl isonitriles. Chem Eur J 4:67–83. doi:10.1002/(SICI)1521-3765

    Article  Google Scholar 

  29. Comins DL, Saha JK (1996) Concise synthesis of mappicine ketone and (\(\pm )\)-mappicine. J Org Chem 61:9623–9624. doi: 10.1021/jo961698v

    Article  CAS  Google Scholar 

  30. Dragovich PS, Prins TJ, Zhou R, Brown EL, Maldonado FC, Fuhrman SA, Zalman LS, Tuntland T, Lee CA, Patick AK, Matthews DA, Hendrickson TF, Kosa MB, Liu B, Batugo MR, Gleeson JPR, Sakata SK, Chen L, Guzman MC, Meador JW, Ferre RA, Worland ST (2002) Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure–activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics. J Med Chem 45:1607–1623. doi:10.1021/jm010469k

    Article  CAS  PubMed  Google Scholar 

  31. Li R, Xue L, Zhu T, Jiang Q, Cui X, Yan Z, McGee D, Wang J, Reddy Gantla V, Pickens JC, McGrath D, Chucholowski A, Morris SW, Webb TR (2006) Design and synthesis of 5-aryl-pyridone-carboxamides as inhibitors of anaplastic lymphoma kinase. J Med Chem 49:1006–1015. doi:10.1021/jm050824x

    Article  CAS  PubMed  Google Scholar 

  32. Obydennov DL, Sidorova ES, Usachev BI, Sosnovskikh VY (2013) A novel, two-step synthesis of 4-pyridone-3-carboxamides from 2-cyano-4-pyrones. Tetrahedron Lett 54:3085–3087. doi:10.1016/j.tetlet.2013.03.132

    Article  CAS  Google Scholar 

  33. Hiort J, Maksimenka K, Reichert M, Perovic’-Ottstadt S, Lin WH, Wray V, Steube K, Schaumann K, Weber H, Proksch P, Ebel R, Müller WEG, Bringmann G (2004) New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod 67:1532–1543. doi:10.1021/np030551d

    Article  CAS  PubMed  Google Scholar 

  34. Xu J, Ebada Sh S (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44:15–31. doi:10.1007/s13225-010-0055-z

    Article  Google Scholar 

  35. Torres M, Gil S, Parra M (2005) New synthetic methods to 2-pyridone rings. Curr Org Chem 9:1757–1779. doi:10.2174/138527205774610886

    Article  CAS  Google Scholar 

  36. Ravinder M, Sadhu PS, Rao VJ (2009) Simple, facile and one-pot conversion of the Baylis–Hillman acetates into 3,5,6-trisubstituted-2-pyridones. Tetrahedron Lett 50:4229–4232. doi:10.1016/j.tetlet.2009.04.136

    Article  CAS  Google Scholar 

  37. Chun YS, Ryu KY, Ko YO, Hong JY, Hong J, Shin H, Lee S (2009) One-pot synthesis of 2-pyridones via chemo- and regioselective tandem blaise reaction of nitriles with propiolates. J Org Chem 74:7556–7558. doi:10.1021/jo901642t

    Article  CAS  PubMed  Google Scholar 

  38. Mathews A, Anabha ER, Sasikala KA, Lathesh KC, Krishnaraj KU, Sreedevi KN, Prasanth M, Devaky KS, Asokan CV (2008) Simple methods to synthesize 2-pyridones: reactions of 2-aroyl-3,3-bis(alkylsulfanyl)acrylaldehydes and cyanoacetamide. Tetrahedron 64:1671–1675. doi:10.1016/j.tet.2007.12.012

    Article  CAS  Google Scholar 

  39. Cristau HJ, Cellier PP, Spindler JF, Taillefer M (2004) Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides. Chem Eur J 10:5607–5622. doi:10.1002/chem.200400582

    Article  CAS  PubMed  Google Scholar 

  40. Pan W, Dong D, Wang K, Zhang J, Wu R, Xiang D, Liu Q (2007) Efficient one-pot synthesis of highly substituted pyridin-2(1H)-ones via the Vilsmeier–Haack reaction of 1-acetyl, 1-carbamoyl cyclopropanes. Org Lett 9:2421–2423. doi:10.1021/ol070905i

    Article  CAS  PubMed  Google Scholar 

  41. Xiang D, Yang Y, Zhang R, Liang Y, Pan W, Huang J, Dong D (2007) Vilsmeier–Haack reactions of 2-arylamino-3-acetyl-5,6-dihydro-4\(H\)-pyrans toward the synthesis of highly substituted pyridin-2(1\(h)\)-ones. J Org Chem 72:8593–8596. doi: 10.1021/jo7015482

    Article  CAS  PubMed  Google Scholar 

  42. Chen L, Zhao YL, Liu Q, Cheng C, Piao CR (2007) Domino reaction of \(\alpha \)-acetyl-\(\alpha \)-carbamoyl ketene dithioacetals with Vilsmeier reagents? A novel and efficient synthesis of 4-halogenated 2(1\(H)\)-pyridinones. J Org Chem 72:9259–9263. doi: 10.1021/jo701742q

    Article  CAS  PubMed  Google Scholar 

  43. Gorobets NY, Yousefi BH, Belaj F, Kappe CO (2004) Rapid microwave-assisted solution phase synthesis of substituted 2-pyridone libraries. Tetrahedron 60:8633–8644. doi:10.1016/j.tet.2004.05.100

    Article  CAS  Google Scholar 

  44. Gibson KR, Hitzel L, Mortishire-Smith RJ, Gerhard U, Jelley RA, Reeve AJ, Rowley M, Nadin A, Owens AP (2002) Synthesis and conformational dynamics of tricyclic pyridones containing a fused seven-membered ring. J Org Chem 67:9354–9360. doi:10.1021/jo026411a

    Article  CAS  PubMed  Google Scholar 

  45. Robin A, Julienne K, Meslin JC, Deniaud D (2004) Synthesis of pyridone and pyridine rings by [4 \(+\) 2] hetero-cyclocondensation. Tetrahedron Lett 45:9557–9559. doi:10.1016/j.tetlet.2004.10.142

  46. Chikhalikar S, Bhawe V, Ghotekar B, Jachak M, Ghagare M (2011) Synthesis of pyridin-2(1\(H)\)-one derivatives via enamine cyclization. J Org Chem 76:3829–3836. doi: 10.1021/jo200197g

    Article  CAS  PubMed  Google Scholar 

  47. Su Y, Miao Zhao M (2010) Synthesis of 2-pyridones and iminoesters via Rh(III)-catalyzed oxidative coupling between acrylamides and alkynes. Org Lett 12:5462–5465. doi:10.1021/ol102306c

  48. Pintiala C, Lawson AM, Comesse S, Daïch A (2013) A versatile domino process for the synthesis of substituted 3-aminomethylene-chromanones and 2-pyridones catalyzed by CsF. Tetrahedron Lett 54:2853–2857. doi:10.1016/j.tetlet.2013.03.096

  49. Plaskon AS, Grygorenko OO, Ryabukhin SV (2012) Recyclizations of 3-formylchromones with binucleophiles. Tetrahedron 68:2743–2757. doi:10.1016/j.tet.2012.01.077

  50. Tietze LF, Brasche G, Gericke KM (2006) Domino reactions inorganic synthesis. Wiley, Weinheim

    Book  Google Scholar 

  51. Zhu J, Bienayme H (eds) (2004) Multicomponent reactions. Wiley, Weinheim

    Google Scholar 

  52. Ruijter E, Scheffelaar R, Orru RVA (2011) Multicomponent reaction design in the quest for molecular complexity and diversity. Angew Chem Int Ed 50:6234–6246. doi:10.1002/anie.201006515

    Article  CAS  Google Scholar 

  53. Balalaie S, Baoosi L, Tahoori F, Rominger F, Bijanzadeh HR (2013) Synthesis of polysubstituted 1,4-dihydropyridines via three-component reaction. Tetrahedron 69:738–743. doi:10.1016/j.tet.2012.10.082

    Article  CAS  Google Scholar 

  54. Maghari S, Ramezanpour S, Darvish F, Balalaie S, Rominger F, Bijanzadeh HR (2013) A new and efficient synthesis of 1,3,4-oxadiazole derivatives using TBTU. Tetrahedron 69:2075–2080. doi:10.1016/j.tet.2012.11.071

    Article  CAS  Google Scholar 

  55. Ramezanpour S, Balalaie S, Rominger F, Bijanzadeh HR (2013) An efficient and diastereoselective synthesis of hydrazino amides via a novel one-pot three-component reaction. Tetrahedron 69:3480–3485. doi:10.1016/j.tet.2013.02.056

    Article  CAS  Google Scholar 

  56. Ghabraie E, Balalaie S, Bararjanian M, Rominger F, Bijanzadeh HR (2011) An efficient one-pot synthesis of tetra-substituted pyrroles. Tetrahedron 67:5415–5420. doi:10.1016/j.tet.2011.05.076

    Article  CAS  Google Scholar 

  57. Balalaie S, Ashouriha M, Rominger F, Bijanzadeh HR (2013) An efficient and facile synthesis of 3-amino-5-chromenyl-butenolides from 3-formyl chromone, dialkyl acetylenedicarboxylate, and primary amines. Mol Divers 17:55–61. doi:10.1007/s11030-013-9423-4

    Article  CAS  PubMed  Google Scholar 

  58. Aakeröy CB, Beatty AM, Zou M (1998) Building organic assemblies with 2-pyridone and dicarboxylic acids: relating molecular conformation and synthon stability to crystal structure. Cryst Eng 1:225–241. doi:10.1016/S0025-5408(98)00197-4

    Article  Google Scholar 

Download references

Acknowledgments

S. B. gratefully acknowledges Alexander von Humboldt foundation for the research fellowship. We are also thanking Prof. Thomas J. J. Mueller for his invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Balalaie.

Additional information

Dedicated to Prof. Rolf Gleiter on the occasion of his 77th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3860 KB)

Supplementary material 2 (pdf 115 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrparvar, S., Balalaie, S., Rabbanizadeh, M. et al. An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media. Mol Divers 18, 535–543 (2014). https://doi.org/10.1007/s11030-014-9522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9522-x

Keywords

Navigation