Molecular Diversity

, Volume 18, Issue 3, pp 621–635 | Cite as

System-level multi-target drug discovery from natural products with applications to cardiovascular diseases

  • Chunli Zheng
  • Jinan Wang
  • Jianling Liu
  • Mengjie Pei
  • Chao Huang
  • Yonghua Wang
Full-Length Paper


The term systems pharmacology describes a field of study that uses computational and experimental approaches to broaden the view of drug actions rooted in molecular interactions and advance the process of drug discovery. The aim of this work is to stick out the role that the systems pharmacology plays across the multi-target drug discovery from natural products for cardiovascular diseases (CVDs). Firstly, based on network pharmacology methods, we reconstructed the drug–target and target–target networks to determine the putative protein target set of multi-target drugs for CVDs treatment. Secondly, we reintegrated a compound dataset of natural products and then obtained a multi-target compounds subset by virtual-screening process. Thirdly, a drug-likeness evaluation was applied to find the ADME-favorable compounds in this subset. Finally, we conducted in vitro experiments to evaluate the reliability of the selected chemicals and targets. We found that four of the five randomly selected natural molecules can effectively act on the target set for CVDs, indicating the reasonability of our systems-based method. This strategy may serve as a new model for multi-target drug discovery of complex diseases.


Systems pharmacology Multi-target drugs Cardiovascular diseases Natural products  Polypharmacology 

Supplementary material

11030_2014_9521_MOESM1_ESM.xls (27 kb)
Supplementary material 1 (xls 27 KB)
11030_2014_9521_MOESM2_ESM.xls (30 kb)
Supplementary material 2 (xls 30 KB)
11030_2014_9521_MOESM3_ESM.xls (258 kb)
Supplementary material 3 (xls 258 KB)
11030_2014_9521_MOESM4_ESM.xls (69 kb)
Supplementary material 4 (xls 69 KB)


  1. 1.
    Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Disc 13:297–309. doi:10.1371/journal.pone.0040262 Google Scholar
  2. 2.
    Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182. doi:10.1016/ PubMedCrossRefGoogle Scholar
  3. 3.
    Wist AD, Berger SI, Iyengar R (2009) Systems pharmacology and genome medicine: a future perspective. Genome Med 1:11. doi:10.1186/gm11 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Morrow JK, Tian L, Zhang S (2010) Molecular networks in drug discovery. Crit Rev Biomed Eng 38:143–156. doi:10.1615/CritRevBiomedEng.v38.i2.30 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kell D (2006) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today 11:1085–1092. doi:10.1016/j.drudis.2006.10.004 PubMedCrossRefGoogle Scholar
  6. 6.
    Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW-N (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20:243–249. doi:10.1038/nbt0302-243 PubMedCrossRefGoogle Scholar
  7. 7.
    Murthy D, Attri KS, Gokhale RS (2013) Network, nodes and nexus: systems approach to multitarget therapeutics. Curr Opin Biotech 24:1129–1136. doi:10.1016/j.copbio PubMedCrossRefGoogle Scholar
  8. 8.
    Huang C, Zheng C, Li Y, Wang Y, Lu A, Yang L (2013) Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief Bioinform (in press). doi:10.1093/bib/bbt035
  9. 9.
    Liu H, Wang J, Zhou W, Wang Y, Yang L (2013) Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J Ethnopharmacol 146:773–793. doi:10.1016/j.jep.2013.02.004 PubMedCrossRefGoogle Scholar
  10. 10.
    Wang X, Xu X, Li Y, Li X, Tao W, Li B, Wang Y, Yang L (2013) Systems pharmacology uncovers Janus functions of botanical drugs: activation of host defense system and inhibition of influenza virus replication. Integr Biol 5:351–371. doi:10.1039/c2ib20204b CrossRefGoogle Scholar
  11. 11.
    Li B, Xu X, Wang X, Yu H, Li X, Tao W, Wang Y, Yang L (2012) A systems biology approach to understanding the mechanisms of action of Chinese herbs for treatment of cardiovascular disease. Int J Mol Sci 13:13501–13520. doi:10.3390/ijms131013501 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wang X, Xu X, Tao W, Li Y, Wang Y, Yang L (2012) A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease. Evid-Based Compl Alt (in press). doi:10.1155/2012/519031
  13. 13.
    Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, Yang L (2012) Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 145:1–10. doi:10.1016/j.jep.2012.09.051 PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou W, Wang Y (2014) A network-based analysis of the types of coronary artery disease from traditional Chinese medicine perspective: Potential for therapeutics and drug discovery. J Ethnopharmacol 151:66–77. doi:10.1016/j.jep.2013.11.007 PubMedCrossRefGoogle Scholar
  15. 15.
    Singh N, Guha R, Giulianotti MA, Pinilla C, Houghten RA, Medina-Franco JL (2009) Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model 49:1010–1024. doi:10.1021/ci800426u PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Austin CP, Brady LS, Insel TR, Collins FS (2004) NIH molecular libraries initiative. Science 306:1138–1139. doi:10.1126/science.1105511 PubMedCrossRefGoogle Scholar
  17. 17.
    Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182. doi:10.1021/ci049714+ PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ertl P, Roggo S, Schuffenhauer A (2008) Natural product-likeness score and its application for prioritization of compound libraries. J Chem Inf Model 48:68–74. doi:10.1021/ci700286x PubMedCrossRefGoogle Scholar
  19. 19.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29. doi:10.1038/75556 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. doi:10.1093/bioinformatics/btq675 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897 PubMedCrossRefGoogle Scholar
  22. 22.
    Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, Duan J, Ling Y (2012) A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 13:6964–6982. doi:10.3390/ijms13066964 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26:i246–i254. doi:10.1093/bioinformatics/btq176 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Korcsmáros T, Szalay MS, Böde C, Kovács IA, Csermely P (2007) How to design multi-target drugs: target search options in cellular networks. Expert Opin Drug Discov 2:1–10CrossRefGoogle Scholar
  25. 25.
    Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. doi:10.1038/nrg2918 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, Pagès F, Trajanoski Z, Galon J (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093. doi:10.1093/bioinformatics/btp101 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Gao F, de Beer VJ, Hoekstra M, Xiao C, Duncker DJ, Merkus D (2010) Both \({\upbeta }\)1-and \({\upbeta }\)2-adrenoceptors contribute to feedforward coronary resistance vessel dilation during exercise. Am J Physiol Heart C 298:H921–H929. doi: 10.1152/ajpheart.00135.2009 CrossRefGoogle Scholar
  28. 28.
    Yoshioka T, Fujii E, Endo M, Wada K, Tokunaga Y, Shiba N, Hohsho H, Shibuya H, Muraki T (1998) Antiinflammatory potency of dehydrocurdione, a zedoary-derived sesquiterpene. Inflamm Res 47:476–481. doi:10.1007/s000110050361 PubMedCrossRefGoogle Scholar
  29. 29.
    Pan M-H, Huang T-M, Lin J-K (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494PubMedGoogle Scholar
  30. 30.
    Kurahashi K, Fujiwara M (1976) Adrenergic neuron blocking action of dehydrocorydaline isolated from Corydalis bulbosa. Can J Physiol Pharm 54:287–293. doi:10.1139/y76-042 CrossRefGoogle Scholar
  31. 31.
    Xu Z, Chen X, Fu S, Bao J, Dang Y, Huang M, Chen L, Wang Y (2012) Dehydrocorydaline inhibits breast cancer cells proliferation by inducing apoptosis in MCF-7 cells. Am J Chin Med 40:177–185. doi:10.1142/S0192415X12500140 PubMedCrossRefGoogle Scholar
  32. 32.
    Pujol A, Mosca R, Farrés J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31:115–123. doi:10.1016/ PubMedCrossRefGoogle Scholar
  33. 33.
    Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci USA 91:3228–3232. doi:10.1073/pnas.91.8.3228 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Li N, Liu JY, Qiu H, Harris TR, Sirish P, Hammock BD, Chiamvimonvat N (2011) Use of metabolomic profiling in the study of arachidonic acid metabolism in cardiovascular disease. Congest Heart Fail 17:42–46. doi:10.1111/j.1751-7133.2010.00209.x PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y, Liu Z, Li C, Li D, Ouyang Y, Yu J, Guo S, He F, Wang W (2012) Drug target prediction based on the herbs components: the study on the multitargets pharmacological mechanism of qishenkeli acting on the coronary heart disease. Evid Based Complement Altern (in press). doi:10.1155/2012/698531
  36. 36.
    Ho CY, Seidman CE (2006) A contemporary approach to hypertrophic cardiomyopathy. Circulation 113:e858–e862. doi:10.1161/circulationaha.105.591982 PubMedCrossRefGoogle Scholar
  37. 37.
    Griendling KK, Murphy T, Alexander RW (1993) Molecular biology of the renin-angiotensin system. Circulation 87:1816–1828. doi:10.1161/01.CIR.87.6.1816 PubMedCrossRefGoogle Scholar
  38. 38.
    Li X, Xu X, Wang J, Yu H, Wang X, Yang H, Xu H, Tang S, Li Y, Yang L (2012) A system-level investigation into the mechanisms of chinese traditional medicine: compound danshen formula for cardiovascular disease treatment. PLoS One 7:e43918. doi:10.1371/journal.pone.0043918 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Ma XH, Shi Z, Tan C, Jiang Y, Go ML, Low BC, Chen YZ (2010) In-silico approaches to multi-target drug discovery. Pharm Res 27:739–749. doi:10.1007/s11095-010-0065-2 PubMedCrossRefGoogle Scholar
  40. 40.
    Cheng TO (2007) Cardiovascular effects of Danshen. Int J Cardiol 121:9–22. doi:10.1016/j.ijcard.2007.01.004 PubMedCrossRefGoogle Scholar
  41. 41.
    Konik E, Kurtz E, Sam F, Sawyer D (2012) Coronary artery spasm, hypertension, hypokalemia and licorice. J Clin Case Rep 2:143. doi:10.4172/2165-7920.1000143
  42. 42.
    Lü D-Y, Cao Y, Li L, Zhu Z-Y, Dong X, Zhang H, Chai Y-F, Lou Z-Y (2011) Comparative analysis of essential oils found in Rhizomes Curcumae and Radix Curcumae by gas chromatography-mass spectrometry. J Pharm Anal 1:203–207. doi:10.1016/j.jpha.2011.05.001
  43. 43.
    Fan HY, Fu FH, Yang MY, Xu H, Zhang AH, Liu K (2010) Antiplatelet and antithrombotic activities of salvianolic acid A. Thromb Res 126:e17–e22. doi:10.1016/j.thromres.2010.04.006 PubMedCrossRefGoogle Scholar
  44. 44.
    Kim YH, Shin EK, Kim DH, Lee HH, Park JHY, Kim J-K (2010) Antiangiogenic effect of licochalcone A. Biochem Pharmacol 80:1152–1159. doi:10.1016/j.bcp.2010.07.006 PubMedCrossRefGoogle Scholar
  45. 45.
    Kim M, Kim Y (2010) Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr Res Pract 4:191–195. doi:10.4162/nrp.2010.4.3.191 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol 7:e1002037. doi:10.1371/journal.pcbi.1002037 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wang J-G, Staessen JA (2000) Genetic polymorphisms in the renin-angiotensin system: relevance for susceptibility to cardiovascular disease. Eur J Pharmacol 410:289–302. doi:10.1016/S0014-2999(00)00822-0 PubMedCrossRefGoogle Scholar
  48. 48.
    Bai JP, Abernethy DR (2013) Systems pharmacology to predict drug toxicity: integration across levels of biological organization. Annu Rev Pharmacol 53:451–473. doi:10.1146/annurev-pharmtox-011112-140248 CrossRefGoogle Scholar
  49. 49.
    Serena DT, Gianni C, Valentina C, Mauro G, Tiziana C, Chiara S, Simone N, Barbara M, Giuseppina B, Virgilio M (2013) Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B Biointerfaces 111:142–149. doi:10.1016/j.colsurfb.2013.05.031 CrossRefGoogle Scholar
  50. 50.
    Xiong X, Yang X, Liu Y, Zhang Y, Wang P, Wang J (2013) Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res 36:570–579. doi:10.1038/hr.2013.18 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Webb NJ, Bottomley MJ, Watson CJ, Brenchley PE (1998) Vascular endothelial growth factor (VEGF) is released from platelets during blood clotting: implications for measurement of circulating VEGF levels in clinical disease. Clin Sci 94:395–404. doi:10.1042/cs0940395 PubMedGoogle Scholar
  52. 52.
    Thomas T, Advani A (2006) Inflammation in cardiovascular disease and regulation of the actin cytoskeleton in inflammatory cells: the actin cytoskeleton as a target. Cardiovasc Hematol Agents Med Chem 4:165–182. doi:10.2174/187152506776369926 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chunli Zheng
    • 1
  • Jinan Wang
    • 1
  • Jianling Liu
    • 2
  • Mengjie Pei
    • 2
  • Chao Huang
    • 1
  • Yonghua Wang
    • 1
  1. 1.Center of Bioinformatics, College of Life ScienceNorthwest A&F UniversityYanglingChina
  2. 2.College of Life ScienceNorthwest UniversityXi’anChina

Personalised recommendations