Skip to main content
Log in

Tractable synthesis of multipurpose screening compounds with under-represented molecular features for an open access screening platform

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The layout of multipurpose screening libraries must address criteria for the compounds such as novelty, diversity potential, innovative design, and last but not least synthetic tractability. While academic compound collections are often innovative, novel, and highly divers, synthesis of analogs or larger substance quantities is often hampered by complex multistep syntheses with low overall yields. In addition, covalently binding compounds and interaction motifs designed to bind metal ions were discriminated against by the paradigm that these interaction types must almost inevitably lead to toxic effects. We would like to challenge this hypothesis. The lack of such interactions could be a reason for frequent failure in the disclosure of hits for hitherto undruggable target proteins using commercially available screening collections. Thus, easily synthesizable screening candidates equipped to bind covalently to nucleophiles or to metalloenzymes by chelation are under-represented in public access screening libraries. Within this work, we present the synthesis and deposition of 88 compounds with five distinct functional classes, each of which features under-represented screening motifs, for example, metal ion complexation, reversible covalent binding, or halogen bonding. The collection includes acetohydrazides, acylhydrazones, propylene glycol ethers, 2-cyanoacetamides, and 2-cyanoacrylamides. The rational for the synthesis of most of the compounds was recently published by our group and is now supplemented by additional compounds reported here for the first time. The public access disposition enables academic research groups to collectively expand the druggable space and interdisciplinary collaborate within the scientific field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Tsukamoto T (2013) Tough times for medicinal chemists: are we to blame? ACS Med Chem Lett 4:369–370. doi:10.1621/Ml400074k

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Zohrabi-Kalantari V, Wilde F, Grünert R, Bednarski PJ, Link A (2014) 4-Aminocyclopentane-1,3-diols as platforms for diversity: synthesis of a screening library. Med Chem Comm 5:203–213. doi:10.1039/C3MD00252G

    Article  CAS  Google Scholar 

  3. Wilde F, Link A (2013) Advances in the design of a multipurpose fragment screening library. Expert Opin Drug Discov 8:597–606. doi:10.1517/17460441.2013.780022

    Article  CAS  PubMed  Google Scholar 

  4. Arrowsmith J (2011) Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov 10:328–329. doi:10.1038/nrd3439

    Article  CAS  PubMed  Google Scholar 

  5. Singh J, Petter RC, Baillie TA, Whitty A (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10:307–317. doi:10.1038/nrd3410

    Article  CAS  PubMed  Google Scholar 

  6. Day JA, Cohen SM (2013) Investigating the selectivity of metalloenzyme inhibitors. J Med Chem 56:7997–8007. doi:10.1021/jm401053m

    Article  CAS  PubMed  Google Scholar 

  7. Alcock JF, Baker RJ, Diamanti AA (1972) \(N\)-Acylhydrazine grouping as a ligand. 1. Coordination-compounds of keto-\(N\)-acylhydrazines and enol-\(N\)-Acylhydrazines with cobalt(II), nickel(II), and coppper(II). Aust J Chem 25:289–302

    Article  CAS  Google Scholar 

  8. Angelusiu MV, Barbuceanu SF, Draghici C, Almajan GL (2010) New Cu(II), Co(II), Ni(II) complexes with aroyl-hydrazone based ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. Eur J Med Chem 45:2055–2062. doi:10.1016/j.ejmech.2010.01.033

    Article  CAS  PubMed  Google Scholar 

  9. Narang KK, Singh MK (1987) Synthesis and studies of some bivalent transition-metal complexes with acylhydrazones. Inorg Chim Acta 131:241–245. doi:10.1016/S0020-1693(00)96032-8

    Article  CAS  Google Scholar 

  10. Singh VP (2008) Synthesis, electronic and ESR spectral studies on copper(II) nitrate complexes with some acylhydrazines and hydrazones. Spectrochim Acta A 71:17–22. doi:10.1016/j.saa.2007.11.004

    Article  Google Scholar 

  11. Su X, Aprahamian I (2014) Hydrazone-based switches, metallo-assemblies and sensors. Chem Soc Rev 43(6):1963–1981

    Article  CAS  PubMed  Google Scholar 

  12. Burgeson JR, Gharaibeh DN, Moore AL, Larson RA, Amberg SM, Bolken TC, Hruby DE, Dai DC (2013) Lead optimization of an acylhydrazone scaffold possessing antiviral activity against Lassa virus. Bioorg Med Chem Lett 23:5840–5843. doi:10.1016/j.bmcl.2013.08.103

    Article  CAS  PubMed  Google Scholar 

  13. Congiu C, Onnis V (2013) Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg Med Chem 21:6592–6599. doi:10.1016/j.bmc.2013.08.026

    Article  CAS  PubMed  Google Scholar 

  14. Kheradmand A, Navidpour L, Shafaroodi H, Saeedi-Motahar G, Shafiee A (2013) Design and synthesis of niflumic acid-based \(N\)-acylhydrazone derivatives as novel anti-inflammatory and analgesic agents. Med Chem Res 22:2411–2420. doi: 10.1007/s00044-012-0235-3

    Article  CAS  Google Scholar 

  15. de Oliveira CS, Lira BF, Barbosa-Filho JM, Lorenzo JG, de Athayde-Filho PF (2012) Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: a review of the literature from 2000–2012. Molecules 17:10192–10231. doi:10.3390/molecules170910192

    Google Scholar 

  16. Bakht MA, Yar MS, Abdel-Hamid SG, Samad A (2010) Molecular properties prediction, synthesis and antimicrobial activity of some newer oxadiazole derivatives. Eur J Med Chem 45:5862–5869. doi:10.1016/j.ejmech.2010.07.069

    Article  CAS  PubMed  Google Scholar 

  17. Akhtar T, Hameed S, Al-Masoudi NA, Loddo R, La Colla P (2008) In vitro antitumor and antiviral activities of new benzothiazole and 1,3,4-oxadiazole-2-thione derivatives. Acta Pharm 58:135–149. doi:10.2478/v10007-008-0007-2

    Article  CAS  PubMed  Google Scholar 

  18. Ramaprasad GC, Kalluraya B, Kumar BS, Mallya S (2013) Synthesis of new oxadiazole derivatives as anti-inflammatory, analgesic, and antimicrobial agents. Med Chem Res 22:5381–5389. doi:10.1007/s00044-012-0298-1

    Article  CAS  Google Scholar 

  19. Barszcz B (2005) Coordination properties of didentate \(N\),\(O\) heterocyclic alcohols and aldehydes towards Cu(II), Co(II), Zn(II) and Cd(II) ions in the solid state and aqueous solution. Coord Chem Rev 249:2259–2276. doi: 10.1016/j.ccr.2005.02.020

    Article  CAS  Google Scholar 

  20. Frank P, Benfatto M, Hedman B, Hodgson KO (2012) The X-ray absorption spectroscopic model of the copper(II) imidazole complex Ion in liquid aqueous solution: a strongly solvated square pyramid. Inorg Chem 51:2086–2096. doi:10.1021/Ic2017819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hinge VK, Joshi SK, Shrivastava BD, Prasad J, Srivastava K (2011) X-ray absorption studies of copper (II) mixed ligand complexes with benzimidazole as one of the ligands. Indian J Pure Ap Phy 49:168–172

    CAS  Google Scholar 

  22. Jian FF, Wang QX, Sun PP, Jiao K (2004) Structure characterizations and electrochemical property of Hexa(imidazole)iron(II) chloride water solvate: [FeIm\(_{6}\)]Cl\(_{2}\) \(\cdot \) 4H\(_{2}\)O. Chinese J Inorg Chem 20:581–585

    CAS  Google Scholar 

  23. Szulmanowicz MS, Zawartka W, Gniewek A, Trzeciak AM (2010) Structure, dynamics and catalytic activity of palladium(II) complexes with imidazole ligands. Inorg Chim Acta 363:4346–4354. doi:10.1016/j.ica.2010.08.037

    Article  CAS  Google Scholar 

  24. Wang QH, Yu LL, Liu Q, Cheng ML (2011) Syntheses, crystal structures and electrochemical properties of cobalt and nickel complexes containing imidazole ligand. Chin J Inorg Chem 27:989–995

    CAS  Google Scholar 

  25. Selvaraj N, Ganguly S (2013) Comparative molecular similarity indices analysis of some 1-substituted imidazole analogs as \(Candida albicans\) P450-demethylase inhibitors. Med Chem Res 22:2570–2577. doi: 10.1007/s00044-012-0251-3

    Article  CAS  Google Scholar 

  26. Ganguly S, Singh SP, Chandra R (2004) Synthesis and antimicrobial activity of some new 2-methyl-5-nitroimidazole derivatives. J Indian Chem Soc 81:781–782

    CAS  Google Scholar 

  27. Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with \(^{18}\)F-fluoromisonidazole. Semin Nucl Med 37:451–461. doi: 10.1053/j.semnuclmed.2007.07.001

    Article  PubMed  Google Scholar 

  28. Militzer H-C, Gries J, Koep S (2012) Substituted sodium 1\(H\)-pyrazol-5-olate as HIF prolylhydroxylase inhibitors and their preparation. WO2012065967A1

  29. Honda S, Kakehi K, Fujikawa K, Oka Y, Takahashi M (1988) Mechanism of the reaction of reducing carbohydrates with 2-cyanoacetamide, used for postcolumn labeling in high-performance liquid-chromatography for photometric, fluorimetric and electrochemical detection. Carbohyd Res 183:59–69. doi:10.1016/0008-6215(88)80045-4

    Article  CAS  Google Scholar 

  30. Serafimova IM, Pufall MA, Krishnan S, Duda K, Cohen MS, Maglathlin RL, McFarland JM, Miller RM, Frodin M, Taunton J (2012) Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat Chem Biol 8:471–476. doi:10.1038/Nchembio.925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Du A-L, Ji T-L, Yang B, Cao J-F, Zhang X-G, Li Y, Pan S, Zhang B, Zeng X-W (2013) Neuroprotective effect of AG490 in experimental traumatic brain injury of rats. Chin Med J 126:2934–2937. doi:10.3760/cma.j.issn.0366-6999.20121193

    CAS  PubMed  Google Scholar 

  32. Kaneko N, Kita A, Yamanaka K, Mori M (2013) Combination of YM155, a survivin suppressant with a STAT3 inhibitor: a new strategy to treat diffuse large B-cell lymphoma. Leuk Res 37:1156–1161. doi:10.1016/j.leukres.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  33. Wilde F, Lemmerhirt H, Emmrich T, Bednarski PJ, Link A (2014) Microwave-assisted synthesis and evaluation of acylhydrazones as potential inhibitors of bovine glutathione peroxidase. Mol Div. Epub ahead of print. doi:10.1007/s11030-013-9501-7

  34. Grill H, Reiter F, Loeser R, Schliack M, Seibel K (1985) \(p\)-Oxybenzoic acid derivatives and their therapeutic use. DE3326164A1

  35. Wilde F, Chamseddin C, Lemmerhirt H, Bednarski PJ, Jira T, Link A (2014) Evaluation of (\(S\)), (\(R\))-misonidazole as GPX inhibitors: synthesis, characterization including circular dichroism and in vitro testing on bovine GPx-1. Arch Pharm Chem Life Sci 347:153–160. doi: 10.1002/ardp.201300285

    Article  CAS  Google Scholar 

  36. Novak P, Kisic A, Hrenar T, Jednacak T, Miljanic S, Verbanec G (2011) In-line reaction monitoring of entacapone synthesis by Raman spectroscopy and multivariate analysis. J Pharm Biomed 54:660–666. doi:10.1016/j.jpba.2010.10.012

    Article  CAS  Google Scholar 

  37. Cao BP, Ding HX, Yang RC, Wang XJ, Xiao Q (2012) Total synthesis of a marine alkaloid–rigidin E. Mar Drugs 10:1412–1421. doi:10.3390/Md10061412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kang TR, Chen LM (2011) \((E)\)-\(N\)-Benzyl-2-cyano-3-phenylacrylamide. Acta Crystallogr E 67:o8. doi: 10.1107/S1600536810049548

    Article  CAS  Google Scholar 

  39. Li J, Murray CW, Waszkowycz B, Young SC (1998) Targeted molecular diversity in drug discovery: integration of structure-based design and combinatorial chemistry. Drug Discov Today 3:105–112. doi:10.1016/S1359-6446(97)01138-0

    Article  CAS  Google Scholar 

  40. Lock G, Stach K (1944) Catalytic decomposition of hydrazones. II. Hydrazones of the acetophenone series. Ber Dtsch Chem Ges B 77B:293–296

    Article  CAS  Google Scholar 

  41. Letsinger RL, Collat R (1952) The reaction of hydrazine with some \(\alpha \)-(dimethylamino)-acetophenones. J Am Chem Soc 74:621–623. doi: 10.1021/ja01123a013

    Article  CAS  Google Scholar 

  42. Pchelka BK, Loupy A, Petit A (2006) Improvement and simplification of synthesis of 3-aryloxy-1,2-epoxypropanes using solvent-free conditions and microwave irradiations. Relation with medium effects and reaction mechanism. Tetrahedron 62:10968–10979. doi:10.1016/j.tet.2006.08.067

    Article  CAS  Google Scholar 

  43. Allen CFH, Burness DM (1949) Chemistry of o-terphenyl. III. Sulfonic acids. J Org Chem 14:163–169. doi:10.1021/jo01153a023

    Article  CAS  PubMed  Google Scholar 

  44. Luo S, Zhang B, Wang PG, Cheng J-P (2003) Ytterbium triflate-catalyzed reactions of epoxide with nitrogen heterocycles under solvent-free condition. Synth Commun 33:2989–2994. doi:10.1081/scc-120022472

    Article  CAS  Google Scholar 

  45. Sunjic V, Kolbah D, Kajfez F, Blazevic N (1968) 1-Imidazolyl derivatives of 2-hydroxy-3-phenoxypropane. J Med Chem 11:1264–1265. doi:10.1021/jm00312a611

    Article  CAS  PubMed  Google Scholar 

  46. Haworth RD, Atkinson JR (1938) Constituents of natural phenolic resins. X. Structure of l-matairesinol dimethyl ether and observations on the condensation of reactive methylene groups with \(O\)-methyleugenol oxide. J Chem Soc 1938:797–808. doi: 10.1039/jr9380000797

    Article  Google Scholar 

  47. Shukla JS, Bhatia P (1978) Synthesis of some enaminonitriles. J Indian Chem Soc 55:281–283

    CAS  Google Scholar 

  48. Manikowski A, Kolarska Z (2009) Facile and versatile room-temperature synthesis of \(N, N\)-disubstituted cyanoacetamides from malonic ester chloride. Synth Commun 39:3621–3638. doi: 10.1080/00397910902788216

    Article  CAS  Google Scholar 

  49. McCall JM, TenBrink RE, Ursprung JJ (1975) New approach to triaminopyrimidine N-oxides. J Org Chem 40:3304–3306. doi:10.1021/jo00910a040

    Article  CAS  PubMed  Google Scholar 

  50. Proenca F, Costa M (2008) A simple and eco-friendly approach for the synthesis of 2-imino- and 2-oxo-2\(H\)-chromene-3-carboxamides. Green Chem 10:995–998. doi: 10.1039/b807892k

    Article  CAS  Google Scholar 

  51. Kasturi TR, Srinivasan A (1966) A revised structure for the condensation product of 2-carbethoxycyclopentanone and ethyl cyanoacetate. Tetrahedron 22:2575–2580. doi:10.1016/s0040-4020(01)99049-0

    Article  CAS  Google Scholar 

  52. Nitsche C, Steuer C, Klein CD (2011) Arylcyanoacrylamides as inhibitors of the Dengue and West Nile virus proteases. Bioorg Med Chem 19:7318–7337. doi:10.1016/j.bmc.2011.10.061

    Article  CAS  PubMed  Google Scholar 

  53. Wang K, Nguyen K, Huang Y, Dömling A (2009) Cyanoacetamide multicomponent reaction (I): parallel synthesis of cyanoacetamides. J Comb Chem 11:920–927. doi:10.1021/cc9000778

    Google Scholar 

  54. Bhawal BM, Khanapure SP, Biehl ER (1990) Rapid, low-temperature amidation of ethyl cyanoacetate with lithium amides derived from primary and secondary amines. Synth Commun 20:3235–3243. doi:10.1080/00397919008051551

    Google Scholar 

  55. Sharkh AA, Perekhoda LA, Gashko LA, Georgiyants VA (2005) Synthesis of ylidene derivatives of cyanoacetic acid benzylamide as analogs of biologically active substances. Visn Farm, 2005:15–18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Link.

Electronic supplementary material

Below are the link to the electronic supplementary material.

Supplementary material 1 (pdf 321 KB)

Supplementary material 2 (pdf 4217 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, F., Specker, E., Neuenschwander, M. et al. Tractable synthesis of multipurpose screening compounds with under-represented molecular features for an open access screening platform. Mol Divers 18, 483–495 (2014). https://doi.org/10.1007/s11030-014-9518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9518-6

Keywords

Navigation