Skip to main content

Advertisement

Log in

Selective MAO-B inhibitors: a lesson from natural products

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer’s and Parkinson’s. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

5-HTP:

5-Hydroxytryptophan

6-OHDA:

6-Hydroxydopamine

AChE:

Acetylcholinesterase

A:

Adrenaline

AD:

Alzheimer’s disease

AEA:

Anandamide

AR:

Asparagus racemosus

BER:

Berberine

BBB:

Blood–brain barrier

BuChE:

Butyrylcholinesterase

bMAO:

Bovine monoamine oxidase

\(n\)-BuOH:

1-Butanol

CAR:

Chloroform extract

CB1:

Cannabinoid receptor type 1

clogP:

Calculated partition coefficient

CNS:

Central nervous system

DA:

Dopamine

DOPA:

Levodopa

DOPAC:

3,4-Dihydroxyphenyl acetic acid

EGCG:

Epigallocatechine gallate

FST:

Forced swimming test

\(\hbox {hA}_{\mathrm{2A}}\) :

Human adenosine 2A

HAR:

Hexane extract

HPE:

Hypericum perforatum methanol extract

HPLC:

High-performance liquid chromatography

HR-MS:

High-resolution mass spectrometry

\(\hbox {IC}_{50}\) :

Half maximal inhibitory concentration

IL-4:

Interleukin-4

IFN-\(\upgamma \) :

Interferon \(\upgamma \)

\(K_{\mathrm{d}}\) :

Dissociation constant

kDa:

KiloDalton

\(K_{\mathrm{i}}\) :

Inhibition constant

\(K_{\mathrm{m}}\) :

Michaelis constant

\(I_{\mathrm{max}}\) :

Maximal rate of inactivation

\(\hbox {LD}_{50}\) :

Half lethal dose

LED:

Light-emitting diode

MAO:

Monoamine oxidase

mg/kg:

Milligram/kilogram

MAR:

Methanol extract

\(\upmu \)M:

Micromolar

MEKC:

Micellar electrokinetic chromatography

MMP:

Mitochondrial membrane potential

\(\hbox {MPP}^{+}\) :

1-Methyl-4-phenylpyridinium

MPT:

Mitochondrial permeability transition

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NA:

Noradrenaline

ND:

Not determined

nM:

Nanomolar

NMDA:

N-Methyl-d-aspartate

NMR:

Nuclear magnetic resonance

PBS:

Phosphate buffer system

PC12:

Prostatic cancer cells

PD:

Parkinson’s disease

PEA:

Phenylethylamine

p\(\hbox {IC}_{50}\) :

\(-\)log \(\hbox {IC}_{50}\)

pMAO:

Pig brain monoamine oxidase

PRF:

Proanthocyanidin-rich fraction

PwTX-I:

6-Hydroxytripargine

PwTX-II:

1-(4-Guanidinobutoxy)-6-hydroxy-1,2,3,4-tetrahydro-\(\upbeta \)-carboline

rMAO:

Rat monoamine oxidase

SFE:

Supercritical fluid extraction

ThC:

Tetrahydrocurcumin

THC:

Tetrahydrocannabinol

TST:

Immobility time in tail suspension test

\(V_{\mathrm{max}}\) :

Maximum reaction rate

References

  1. Blaschko H, Richter D, Schlossmann H (1937) The inactivation of adrenaline. J Physiol 90:1–17

    Google Scholar 

  2. Zeller EA (1938) Über den enzymatischen abbau von histamin und diaminen. 2 Mitteilung. Helv Chim Acta 21:880–890

    Article  CAS  Google Scholar 

  3. Murphy DL (1978) Substrate-selective monoamine oxidases: inhibitor, tissue, species and functional differences. Biochem Pharmacol 27:1889–1893

    Article  CAS  PubMed  Google Scholar 

  4. Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297

    Article  CAS  PubMed  Google Scholar 

  5. Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85:4934–4938

    Article  CAS  PubMed  Google Scholar 

  6. De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 102:12684–12689. doi:10.1073/pnas.0505975102

    Article  PubMed  CAS  Google Scholar 

  7. Binda C, Hubálek F, Li M, Edmondson DE, Mattevi A (2004) Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Lett 564:225–228. doi:10.1016/S0014-5793(04)00209-1

    Article  CAS  PubMed  Google Scholar 

  8. Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase a and monoamine oxidase b cell populations in human brainstem. Neuroscience 25:439–456. doi:10.1016/0306-4522(88)90250-3

    Article  CAS  PubMed  Google Scholar 

  9. Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60:1527–1533. doi:10.1016/j.addr.2008.06.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127. doi:10.1093/bmb/ldn013

    Article  CAS  PubMed  Google Scholar 

  11. Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309. doi:10.1038/nrn1883

    Article  CAS  PubMed  Google Scholar 

  12. Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 80:47–54

    Article  Google Scholar 

  13. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520. doi:10.1111/j.1471-4159.1989.tb09150.x

    Article  CAS  PubMed  Google Scholar 

  14. Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49:1–20

    Article  CAS  PubMed  Google Scholar 

  15. Benedetti MS, Dostert P (1989) Monoamine oxidase, brain ageing and degenerative diseases. Biochem Pharmacol 38:555–561. doi:10.1016/0006-2952(89)90198-6

    Article  Google Scholar 

  16. Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE (2002) Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neurosci Lett 326:56–60. doi:10.1016/S0304-3940(02)00307-5

    Article  CAS  PubMed  Google Scholar 

  17. Abell CW, Kwan SW (2001) Molecular characterization of monoamine oxidases A and B. Prog Nucl Acid Res Mol Biol 65:129–156. doi:10.1016/S0079-6603(00)65004-3

    Article  CAS  Google Scholar 

  18. Elmer LW, Bertoni JM (2008) The increasing role of monoamine oxidase type B inhibitors in Parkinson’s disease therapy. Expert Opin Pharmacother 9:2759–2772. doi:10.1517/14656566.9.16.2759

    Article  CAS  PubMed  Google Scholar 

  19. Bolasco A, Fioravanti R, Carradori S (2005) Recent development of monoamine oxidase inhibitors. Expert Opin Ther Pat 15:1763–1782. doi:10.1517/13543776.15.12.1763

    Article  CAS  Google Scholar 

  20. Secci D, Carradori S, Bolasco A, Bizzarri B, D’Ascenzio M, Maccioni E (2012) Discovery and optimization of pyrazoline derivatives as promising monoamine oxidase inhibitors. Curr Top Med Chem 12:2240–2257. doi:10.2174/1568026611212200009

    Article  CAS  PubMed  Google Scholar 

  21. Secci D, Bolasco A, Chimenti P, Carradori S (2011) The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr Med Chem 18:5114–5144. doi:10.2174/092986711797636090

    Article  CAS  PubMed  Google Scholar 

  22. Bolasco A, Carradori S, Fioravanti R (2010) Focusing on new monoamine oxidase inhibitors. Expert Opin Ther Pat 20:909–939. doi:10.1517/13543776.2010.495716

    Article  CAS  PubMed  Google Scholar 

  23. Carradori S, Secci D, Bolasco A, Chimenti P, D’Ascenzio M (2012) Patent-related survey on new monoamine oxidase inhibitors and their therapeutic potential. Expert Opin Ther Pat 22:759–801. doi:10.1517/13543776.2012.698613

    Article  CAS  PubMed  Google Scholar 

  24. Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: \(\beta \)-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 326:378–386. doi: 10.1016/j.bbrc.2004.11.033

    Article  CAS  PubMed  Google Scholar 

  25. Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci USA 105:5739–5744. doi:10.1073/pnas.0710626105

    Article  CAS  PubMed  Google Scholar 

  26. Reniers J, Robert S, Frederick R, Masereel B, Vincent S, Wouters J (2011) Synthesis and evaluation of \(\beta \)-carboline derivatives as potential monoamine oxidase inhibitors. Bioorg Med Chem 19:134–144. doi: 10.1016/j.bmc.2010.11.041

    Article  CAS  PubMed  Google Scholar 

  27. Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT, Swanson PD (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738. doi:10.1093/aje/155.8.732

    Article  PubMed  Google Scholar 

  28. Chen JF, Steyn S, Staal R, Petzer JP, Xu K, Van Der Schyf CJ, Castagnoli K, Sonsalla PK, Castagnoli N Jr, Schwarzschild MA (2002) 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 277:36040–36044. doi:10.1074/jbc.M206830200

    Article  CAS  PubMed  Google Scholar 

  29. Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143

    CAS  PubMed  Google Scholar 

  30. Petzer JP, Castagnoli N Jr, Schwarzschild MA, Chen JF, Van der Schyf CJ (2009) Dual-target-directed drugs that block monoamine oxidase B and adenosine A(2A) receptors for Parkinson’s disease. Neurotherapeutics 6:141–151. doi:10.1016/j.nurt.2008.10.035

    Article  CAS  PubMed  Google Scholar 

  31. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599. doi:10.1021/jm0704090

    Article  CAS  PubMed  Google Scholar 

  32. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v

    Google Scholar 

  33. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153. doi:10.1021/np040106y

    Google Scholar 

  34. Breinbauer R, Manger M, Scheck M, Waldmann H (2002) Natural product guided compound library development. Curr Med Chem 9:2129–2145. doi:10.2174/0929867023368773

    Article  CAS  PubMed  Google Scholar 

  35. Vina D, Serra S, Lamela M, Delogu G (2012) Herbal natural products as a source of monoamine oxidase inhibitors: a review. Curr Top Med Chem 12:2131–2144. doi:10.2174/1568026611212200003

    Article  CAS  PubMed  Google Scholar 

  36. Rajput MS (2010) Natural monoamine oxidase inhibitors: a review. J Pharmacy Res 3:482–485

    CAS  Google Scholar 

  37. Lin RD, Hou WC, Yen KY, Lee MH (2003) Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines. Phytomedicine 10:650–656. doi:10.1078/0944-7113-00324

    Article  CAS  PubMed  Google Scholar 

  38. Clarke SED, Ramsay RR (2011) Dietary inhibitors of monoamine oxidase A. J Neural Transm 118:1031–1041. doi:10.1007/s00702-010-0537-x

    Article  CAS  Google Scholar 

  39. Yoshino S, Hara A, Sakakibara H, Kawabata K, Tokumura A, Ishisaka A, Kawai Y, Terao J (2011) Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 27:847–852. doi:10.1016/j.nut.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  40. Pan Y, Kong L, Xia X, Zhang W, Xia Z, Jiang F (2005) Antidepressant-like effect of icariin and its possible mechanism in mice. Pharmacol Biochem Behav 82:686–694. doi:10.1016/j.pbb.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  41. Lee MH, Lin RD, Shen LY, Yang LL, Yen KY, Hou WC (2001) Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J Agric Food Chem 49:5551–5555. doi:10.1021/jf010622j

  42. Chimenti F, Cottiglia F, Bonsignore L, Casu L, Casu M, Floris C, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Trombetta G, Loizzo A, Guarino I (2006) Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J Nat Prod 69:945–949. doi:10.1021/np060015w

    Google Scholar 

  43. Saaby L, Rasmussen HB, Jäger AK (2009) MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J Ethnopharmacol 121:178–181. doi:10.1016/j.jep.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  44. Han XH, Hong SS, Hwang JS, Lee MK, Hwang BY, Ro JS (2007) Monoamine oxidase inhibitory components from Cayratia japonica. Arch Pharm Res 30:13–17

    Article  CAS  PubMed  Google Scholar 

  45. Hou WC, Lin RD, Chen CT, Lee MH (2005) Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J Ethnopharmacol 100:216–220. doi:10.1016/j.jep.2005.03.017

    Article  CAS  PubMed  Google Scholar 

  46. Hwang JS, Lee SA, Hong SS, Lee KS, Lee MK, Hwang BY, Ro JS (2005) Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Arch Pharm Res 28:190–194

    Article  CAS  PubMed  Google Scholar 

  47. Haraguchi H, Tanaka Y, Kabbash A, Fujioka T, Ishizu T, Yagi A (2004) Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry 65:2255–2260. doi:10.1016/j.phytochem.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  48. Bandaruk Y, Mukai R, Kawamura T, Nemoto H, Terao J (2012) Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J Agric Food Chem 60:10270–10277. doi:10.1021/jf303055b

    Article  CAS  PubMed  Google Scholar 

  49. Han XH, Hong SS, Hwang JS, Jeong SH, Hwang JH, Lee MH, Lee MK, Lee D, Ro JS, Hwang BY (2005) Monoamine oxidase inhibitory constituents from the fruits of Cudrania tricuspidata. Arch Pharmacal Res 28:1324–1327

    Article  CAS  Google Scholar 

  50. Han XH, Hwang JH, Hong SS, Choe S, Lee C, Lee MS, Lee D, Lee MK, Lee MK, Hwang BY (2010) Monoamine oxidase inhibitory flavonoids from the root bark of Cudrania tricuspidata. Nat Prod Sci 16:75–79. doi:10.1021/np070059k

    Google Scholar 

  51. Stafford GI, Pedersen PD, Jäger AK, Van Staden J (2007) Monoamine oxidase inhibition by southern African traditional medicinal plants. S Afr J Bot 73:384–390. doi:10.1016/j.sajb.2007.03.001

    Article  Google Scholar 

  52. Holt A, Sharman DF, Baker GB, Palcic MM (1997) A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal Biochem 244:384–392. doi:10.1006/abio.1996.9911

    Article  CAS  PubMed  Google Scholar 

  53. Olsen HT, Stafford GI, Van Staden J, Christensen SB, Jäger AK (2008) Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J Ethnopharmacol 117:500–502. doi:10.1016/j.jep.2008.02.015

    Article  CAS  PubMed  Google Scholar 

  54. Zhu W, Ma S, Qu R, Kang D, Liu Y (2006) Antidepressant effect of baicalin extracted from the root of Scutellaria baicalensis in mice and rats. J Pharm Biol 44:503–510. doi:10.1080/13880200600878684

    Article  CAS  Google Scholar 

  55. Singh R, Navneet C, Singh VK (2012) In-silico study of herbal compounds (bacailin, curcumin and dronabinol) as novel MAO inhibitors for Parkinson’s disease treatment. Int J Life Sci Pharma Res 2:L81–L98

    Google Scholar 

  56. Gao L, Fang JS, Bai XY, Zhou D, Wang YT, Liu AL, Du GH (2013) In silico target fishing for the potential targets and molecular mechanisms of baicalein as an anti-parkinsonian agent: discovery of the protective effects on NMDA receptor-mediated neurotoxicity. Chem Biol Drug Des 81:675–687. doi:10.1111/cbdd.12127

    Article  CAS  PubMed  Google Scholar 

  57. Urbain A, Marston A, Grilo LS, Bravo J, Purev O, Purevsuren B, Batsuren D, Reist M, Carrupt PA, Hostettmann K (2008) Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J Nat Prod 71:895–897. doi:10.1021/np070690l

    Article  CAS  PubMed  Google Scholar 

  58. Dimitrov M, Nikolova I, Benbasat N, Kitanov G, Danchev N (2011) Acute toxicity, antidepressive and MAO inhibitory activity of mangiferin isolated from Hypericum Aucheri. Biotechnol Biotechnol Equip 25:2668–2671. doi:10.5504/bbeq2011.0099

    Article  CAS  Google Scholar 

  59. Fowler CJ, Tipton KF, MacKay AV, Youdim MB (1982) Human platelet monoamine oxidase—a useful enzyme in the study of psychiatric disorders. Neuroscience 7:1577–1594. doi:10.1016/0306-4522(82)90016-1

    Article  CAS  PubMed  Google Scholar 

  60. Bhattacharya SK, Sanyal AK, Ghosal S (1972) Monoamine oxidase-inhibiting activity of mangiferin isolated from Canscora decussata. Naturwissenschaften 59:651

    Article  CAS  PubMed  Google Scholar 

  61. Dreiseitel A, Korte G, Schreier P, Oehme A, Locher S, Domani M, Hajak G, Sand PG (2009) Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol Res 59:306–311. doi:10.1016/j.phrs.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  62. Xu Y, Li S, Chen R, Li G, Barish PA, You W, Chen L, Lin M, Ku B, Pan J, Ogle WO (2010) Antidepressant-like effect of low molecular proanthocyanidin in mice: involvement of monoaminergic system. Pharmacol Biochem Behav 94:447–453. doi:10.1016/j.pbb.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  63. Moreira ELG, Rial D, Aguiar AS Jr, Figueiredo CP, Siqueira JM, Dalbo S, Horst H, Oliveira J, Mancini G, dos Santos TS, Villarinho JG, Pinheiro FV, Marino-Neto J, Ferreira J, Bem AF, Latini A, Pizzolatti MG, Ribeiro-do-Valle RM, Prediger RDS (2010) Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. J Neural Transm 117:1337–1351. doi:10.1007/s00702-010-0464-x

    Article  CAS  PubMed  Google Scholar 

  64. Matsumoto T, Suzuki O, Furuta T, Asai M, Kurokawa Y, Nimura Y, Katsumata Y, Takahashi I (1985) A sensitive fluorometric assay for serum monoamine oxidase with kynuramine as substrate. Clin Biochem 18:126–129. doi:10.1016/S0009-9120(85)80094-1

    Article  CAS  PubMed  Google Scholar 

  65. Lin SM, Wang SW, Ho SC, Tang YL (2010) Protective effect of green tea (\(-\))-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 26:1195–1200. doi: 10.1016/j.nut.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  66. Reznichenko L, Kalfon L, Amit T, Youdim MBH, Mandel SA (2010) Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in MPTP-induced Parkinsonism. Neurodegener Dis 7:219–231. doi:10.1159/000265946

    Article  CAS  PubMed  Google Scholar 

  67. Zhang XL, Jiang B, Li ZB, Hao S, An LJ (2007) Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by d-galactose. Pharmacol Biochem Behav 88:64–72. doi:10.1016/j.pbb.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  68. Bi J, Wang XB, Chen L, Hao S, An LJ, Jiang B, Guo L (2008) Catalpol protects mesencephalic neurons against MPTP induced neurotoxicity via attenuation of mitochondrial dysfunction and MAO-B activity. Toxicol Vitro 22:1883–1889. doi:10.1016/j.tiv.2008.09.007

    Article  CAS  Google Scholar 

  69. Kim JH, Kim GH, Hwang KH (2012) Monoamine oxidase and dopamine \(\beta \)-hydroxylase inhibitors from the fruits of Gardenia jasminoides. Biomol Ther 20:214–219. doi: 10.4062/biomolther.2012.20.2.214

    Article  CAS  Google Scholar 

  70. Han YN, Choo Y, Lee YC, Moon YI, Kim SD, Choi JW (2001) Monoamine oxidase B inhibitors from the fruits of Opuntia ficus-indica var. saboten. Arch Pharm Res 24:51–54

    Article  CAS  PubMed  Google Scholar 

  71. Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518:40–46. doi:10.1016/j.ejphar.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  72. Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berlin) 201:435–442. doi:10.1007/s00213-008-1300-y

    Article  CAS  Google Scholar 

  73. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356. doi:10.1055/s-2006-957450

    Article  CAS  PubMed  Google Scholar 

  74. Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96–99. doi:10.1007/s10787-007-1614-0

    Article  CAS  PubMed  Google Scholar 

  75. Morinan A, Garratt HM (1985) An improved fluorimetric assay for brain monoamine oxidase. J Pharmacol Methods 13:213–223

    Article  CAS  PubMed  Google Scholar 

  76. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125. doi:10.1080/10715760500233113

    Article  CAS  PubMed  Google Scholar 

  77. Ucar G, Tas C, Tümer A (2005) Monoamine oxidase inhibitory activities of the scorpion Mesobuthus gibbosus (Buthidae) venom peptides. Toxicon 45:43–52. doi:10.1016/j.toxicon.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  78. Saidemberg DM, Ferreira MAB, Takahashi TN, Gomes PC, Cesar-Tognoli LMM, Da Silva-Filho LC, Tormena CF, Da Silva GVJ, Palma MS (2009) Monoamine oxidase inhibitory activities of indolylalkaloid toxins from the venom of the colonial spider Parawixia bistriata: functional characterization of PwTX-I. Toxicon 54:717–724. doi:10.1016/j.toxicon.2009.05.027

    Article  CAS  PubMed  Google Scholar 

  79. Buckholtz NS (1980) Brain serotonin and 5-hydroxyindoleacetic acid concentrations and serotonin synthesis following tetrahydro-\(\beta \)-carboline administration in mice. Naunyn Schmiedebergs Arch Pharmacol 314:215–221

    Article  CAS  PubMed  Google Scholar 

  80. Cesar LMM, Tormena CF, Marques MR, da Silva GVJ, Mendes MA, Rittner R, Palma MS (2005) Structure determination of hydroxytrypargine: a new tetrahydro-\(\beta \)-carboline toxin from the venom of the spider Parawixia bistriata. Helv Chim Acta 88:796–801. doi: 10.1002/hlca.200590056

    Article  CAS  Google Scholar 

  81. Rommelspacher H, Meier-Henco M, Smolka M, Kloft C (2002) The levels of norharman are high enough after smoking to affect monoamine oxidase B in platelets. Eur J Pharmacol 441:115–125. doi:10.1016/S0014-2999(02)01452-8

    Article  CAS  PubMed  Google Scholar 

  82. Cesar LMM, Mendes MA, Tormena CF, Marques MR, De Souza BM, Saidemberg DM, Bittencourt JC, Palma MS (2005) Isolation and chemical characterization of PwTx-II: a novel alkaloid toxin from the venom of the spider Parawixia bistriata (Araneidae, Araneae). Toxicon 46:786–796. doi:10.1016/j.toxicon.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  83. Han XH, Hong SS, Lee D, Lee JJ, Lee MS, Moon DC, Han K, Oh KW, Lee MK, Ro JS, Hwang BY (2007) Quinolone alkaloids from Evodiae fructus and their inhibitory effects on monoamine oxidase. Arch Pharm Res 30:397–401

    Article  CAS  PubMed  Google Scholar 

  84. Lee MK, Hwang BY, Lee SA, Oh GJ, Choi WH, Hong SS, Lee KS, Ro JS (2003) 1-Methyl-2-undecyl-4(1H)-quinolone as an irreversible and selective inhibitor of type B monoamine oxidase. Chem Pharm Bull 51:409–411. doi:10.1248/cpb.51.409

    Article  CAS  PubMed  Google Scholar 

  85. Krajl M (1965) A rapid microfluorimetric determination of monoamine oxidase. Biochem Pharmacol 14:1684–1685. doi:10.1016/0006-2952(65)90025-0

    Article  CAS  PubMed  Google Scholar 

  86. Lee SA, Hong SS, Han XH, Hwang JS, Oh GJ, Lee KS, Lee MK, Hwang BY, Ro JS (2005) Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem Pharm Bull 53:832–835. doi:10.1007/s12272-001-1212-7

    Article  CAS  PubMed  Google Scholar 

  87. Kong LD, Cheng CHK, Tan RX (2004) Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. J Ethnopharmacol 91:351–355. doi:10.1016/j.jep.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  88. Lee SA, Hwang JS, Han XH, Lee C, Lee MH, Choe SG, Hong SS, Lee D, Lee MK, Hwang BY (2008) Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch Pharm Res 31:679–683. doi:10.1007/s12272-001-1212-7

    Article  CAS  PubMed  Google Scholar 

  89. Ji HF, Shen L (2011) Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules 16:6732–6740. doi:10.3390/molecules16086732

    Article  CAS  PubMed  Google Scholar 

  90. Peng WH, Lo KL, Lee YH, Hung TH, Lin YC (2007) Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci 81:933–938. doi:10.1016/j.lfs.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  91. Kulkarni SK, Dhir A (2008) On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol 589:163–172. doi:10.1016/j.ejphar.2008.05.043

    Article  CAS  PubMed  Google Scholar 

  92. Castillo J, Hung J, Rodriguez M, Bastidas E, Laboren I, Jaimes A (2005) LED fluorescence spectroscopy for direct determination of monoamine oxidase B inactivation. Anal Biochem 343:293–298. doi:10.1016/j.ab.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  93. Lee SS, Kai M, Lee MK (1999) Effects of natural isoquinoline alkaloids on monoamine oxidase activity in mouse brain: inhibition by berberine and palmatine. Med Sci Res 27:749–751

    CAS  Google Scholar 

  94. Kong LD, Cheng CH, Tan RX (2001) Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med 67:74–76. doi:10.1055/s-2001-10874

    Article  CAS  PubMed  Google Scholar 

  95. Lambert DM, Fowler CJ (2005) The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. J Med Chem 48:5059–5087. doi:10.1021/jm058183t

    Google Scholar 

  96. Fišar Z (2012) Cannabinoids and monoamine neurotransmission with focus on monoamine oxidase. Prog Neuropsychopharmacol Biol Psychiatry 38:68–77. doi:10.1016/j.pnpbp.2011.12.010

    Article  PubMed  CAS  Google Scholar 

  97. Hill MN, Hillard CJ, Bambico FR, Patel S, Gorzalka BB, Gobbi G (2009) The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants. Trends Pharmacol Sci 30:484–493. doi:10.1016/j.tips.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  98. Laviolette SR, Grace AA (2006) The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci 63:1597–1613. doi:10.1007/s00018-006-6027-5

    Article  CAS  PubMed  Google Scholar 

  99. Hill MN, Ho WSV, Hillard CJ, Gorzalka BB (2008) Differential effects of the antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents. J Neural Transm 115:1673–1679. doi:10.1007/s00702-008-0131-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Faraj BA, Davis DC, Camp VM, Mooney AJ 3rd, Holloway T, Barika G (1994) Platelet monoamine oxidase activity in alcoholics, alcoholics with drug dependence, and cocaine addicts. Alcohol Clin Exp Res 18:1114–1120. doi:10.1111/j.1530-0277.1994.tb00090.x

    Article  CAS  PubMed  Google Scholar 

  101. Fišar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol 381:563–572. doi:10.1007/s00210-010-0517-6

    Article  PubMed  CAS  Google Scholar 

  102. Egashira T, Takayama F, Yamanaka Y (1999) The inhibition of monoamine oxidase activity by various antidepressants: differences found in various mammalian species. Jpn J Pharmacol 81:115–121. doi:10.1254/jjp.81.115

    Article  CAS  PubMed  Google Scholar 

  103. Singh GK, Garabadu D, Muruganandam AV, Joshi VK, Krishnamurthy S (2009) Antidepressant activity of Asparagus racemosus in rodent models. Pharmacol Biochem Behav 91:283–290. doi:10.1016/j.pbb.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  104. Meena J, Ojha R, Muruganandam AV, Krishnamurthy S (2011) Asparagus racemosus competitively inhibits in vitro the acetylcholine and monoamine metabolizing enzymes. Neurosci Lett 503:6–9. doi:10.1016/j.neulet.2011.07.051

    Article  CAS  PubMed  Google Scholar 

  105. Naoi M, Nagatsu T (1986) Inhibition of monoamine oxidase by 3,4-dihydroxyphenylserine. J Neurochem 47:604–607. doi:10.1111/j.1471-4159.1986.tb04542.x

    Article  CAS  PubMed  Google Scholar 

  106. Mohanasundari M, Sabesan M (2007) Modulating effect of Hypericum perforatum extract on astrocytes in MPTP induced Parkinson’s disease in mice. Eur Rev Med Pharmacol Sci 11:17–20

    CAS  PubMed  Google Scholar 

  107. Van Diermen D, Marston A, Bravo J, Reist M, Carrupt PA, Hostettmann K (2009) Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 122:397–401. doi:10.1016/j.jep.2009.01.007

    Article  PubMed  Google Scholar 

  108. Mazzio EA, Harris N, Soliman KF (1998) Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med 64:603–606. doi:10.1055/s-2006-957530

    Article  CAS  PubMed  Google Scholar 

  109. Chen XG, Jia YG, Wang BX (1992) Inhibitory effects of the extract of pilose antler on monoamine oxidase in aged mice. China J Chin Materia Med 2:107–110

    Google Scholar 

  110. Yang XW (1995) HPLC analysis and inhibitory effect of base components in pilose antler of sika deer and red deer on monoamine oxidase activity. Chin Tradit Herbal Drugs 26:17–19

    Google Scholar 

  111. Zhou R, Wang J, Li S, Liu Y (2009) Supercritical fluid extraction of monoamine oxidase inhibitor from antler velvet. Sep Purif Technol 65:275–281. doi:10.1016/j.seppur.2008.10.036

    Article  CAS  Google Scholar 

  112. Wang BX, Chen XG (1989) Inhibitory effect of hypoxanthine on monoamine oxidase activity. Acta Pharm Sinica 24:573–577

    CAS  Google Scholar 

  113. Hwang KH, Choi K, Park KW (2012) Composition comprising the extract of Loranthus yadoriki sieb having monoamine oxidase-inhibiting activity. WO 2012/081831

  114. Hwang KH, Song I (2003) The inhibitory activity on monoamine oxidase of the fruit of Morus alba. Kor J Pharmacogn 34:185–189

    CAS  Google Scholar 

  115. McEwen CM Jr, Cohen JD (1963) An amine oxidase in normal human serum. J Lab Clin Med 62:766–776

    CAS  PubMed  Google Scholar 

  116. Secci D, Carradori S, Bolasco A, Chimenti P, Yáñez M, Ortuso F, Alcaro S (2011) Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. Eur J Med Chem 46:4846–4852. doi:10.1016/j.ejmech.2011.07.017

    Google Scholar 

  117. Chimenti F, Bolasco A, Secci D, Bizzarri B, Chimenti P, Granese A, Carradori S (2010) Synthesis and characterization of new 3-acyl-7-hydroxy-6,8-substituted-coumarin and 3-acyl-7-benzyloxy-6,8-substituted-coumarin derivatives. J Heterocycl Chem 47:729–733. doi:10.1002/jhet.362

    CAS  Google Scholar 

  118. Chimenti F, Carradori S, Secci D, Bolasco A, Chimenti P, Granese A, Bizzarri B (2009) Synthesis and biological evaluation of novel conjugated coumarin–thiazole systems. J Heterocycl Chem 46:575–578. doi:10.1002/jhet.110

    Article  CAS  Google Scholar 

  119. Chimenti F, Secci D, Bolasco A, Chimenti P, Bizzarri B, Granese A, Carradori S, Yáñez M, Orallo F, Ortuso F, Alcaro S (2009) Synthesis, molecular modeling, and selective inhibitory activity against human monoamine oxidases of 3-carboxamido-7-substituted coumarins. J Med Chem 52:1935–1942. doi:10.1021/jm801496u

    Article  CAS  PubMed  Google Scholar 

  120. Chimenti F, Secci D, Bolasco A, Chimenti P, Granese A, Carradori S, Befani O, Turini P, Alcaro S, Ortuso F (2006) Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of \(N, N^{\prime }\)-bis[2-oxo-2\(H\)-benzopyran]-3-carboxamides. Bioorg Med Chem Lett 16:4135–4140. doi: 10.1016/j.bmcl.2006.04.026

    Article  CAS  PubMed  Google Scholar 

  121. Petzer A, Pienaar A, Petzer JP (2013) The interactions of caffeine with monoamine oxidase. Life Sci 93:283–287. doi:10.1016/j.lfs.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  122. Van der Walt MM, Terre’Blanche G, Petzer A, Lourens ACU, Petzer JP (2013) The adenosine \(\text{ A }_{{\rm 2A}}\) antagonistic properties of selected C8-substituted xanthines. Bioorg Chem 49:49–58. doi: 10.1016/j.bioorg.2013.06.006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Filas (Research Project No. ASR2, Regione Lazio, Italy).

Conflict of interest

The authors state no conflict of interest and have received no payment in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Bolasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carradori, S., D’Ascenzio, M., Chimenti, P. et al. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 18, 219–243 (2014). https://doi.org/10.1007/s11030-013-9490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9490-6

Keywords

Navigation