Advertisement

Molecular Diversity

, Volume 18, Issue 1, pp 149–159 | Cite as

Docking and quantitative structure–activity relationship of oxadiazole derivates as inhibitors of GSK3\(\upbeta \)

  • Luisa Quesada-Romero
  • Julio CaballeroEmail author
Full-Length Paper

Abstract

The binding modes of 42 oxadiazole derivates inside glycogen synthase kinase 3 beta (GSK3\(\upbeta )\) were determined using docking experiments; thus, the preferred active conformations of these inhibitors are proposed. We found that these compounds adopt a scorpion-shaped conformation and they accept a hydrogen bond (HB) from the residue Val135 of the GSK3\(\upbeta \) ATP-binding site hinge region. In addition, quantitative structure–activity relationship (QSAR) models were constructed to explain the trend of the GSK3\(\upbeta \) inhibitory activities for the studied compounds. In a first approach, three-dimensional (3D) vectors were calculated using docking conformations and, by using multiple-linear regression, we assessed that GETAWAY vectors were able to describe the reported biological activities. In other QSAR approach, SMILES-based optimal descriptors were calculated. The best model included three-SMILES elements SSS\(_\mathrm{k}\) leading to the identification of key molecular features that contribute to a high GSK3\(\upbeta \) inhibitory activity.

Keywords

GSK3\(\upbeta \) inhibitors Oxadiazole derivates Docking Quantitative structure–activity relationships Three-dimensional descriptors Optimal descriptors 

Notes

Acknowledgments

This study was supported by FONDECYT Regular # 1130141. Authors would like to express their sincere gratitude to Editor in Chief Guillermo A. Morales for assistance with the English correction of the manuscript.

References

  1. 1.
    Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9 PubMedCrossRefGoogle Scholar
  2. 2.
    Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739:280–297. doi: 10.1016/j.bbadis.2004.06.017 PubMedCrossRefGoogle Scholar
  3. 3.
    Wagner U, Utton M, Gallo JM, Miller CC (1996) Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci 109:1537–1543PubMedGoogle Scholar
  4. 4.
    Eldar-Finkelman H, Licht-Murava A, Pietrokovski S, Eisenstein M (2010) Substrate competitive GSK-3 inhibitors: strategy and implications. Biochim Biophys Acta 1804:598–603. doi: 10.1016/j.bbapap.2009.09.010 PubMedCrossRefGoogle Scholar
  5. 5.
    Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M (2003) Structural characterization of the GSK-3[beta] active site using selective and non-selective ATP-mimetic inhibitors. J Mol Biol 333:393–407. doi: 10.1016/j.jmb.2003.08.031 PubMedCrossRefGoogle Scholar
  6. 6.
    Ryves WJ, Harwood AJ (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun 280:720–725. doi: 10.1006/bbrc2000.4169 PubMedCrossRefGoogle Scholar
  7. 7.
    Caballero J, Zilocchi S, Tiznado W, Collina S, Rossi D (2011) Binding studies and quantitative structure–activity relationship of 3-amino-1H-indazoles as inhibitors of GSK3beta. Chem Biol Drug Des 78:631–641. doi: 10.1111/j.1747-0285.2011.01186.x PubMedCrossRefGoogle Scholar
  8. 8.
    Lo Monte F, Kramer T, Gu J, Anumala UR, Marinelli L, La Pietra V, Novellino E, Franco B, Demedts D, Van Leuven F, Fuertes A, Dominguez JM, Plotkin B, Eldar-Finkelman H, Schmidt B (2012) Identification of glycogen synthase kinase-3 inhibitors with a selective sting for glycogen synthase kinase-3alpha. J Med Chem 55:4407–4424. doi: 10.1021/jm300309a PubMedCrossRefGoogle Scholar
  9. 9.
    Lo Monte F, Kramer T, Gu J, Brodrecht M, Pilakowski J, Fuertes A, Dominguez JM, Plotkin B, Eldar-Finkelman H, Schmidt B (2013) Structure-based optimization of oxadiazole-based GSK-3 inhibitors. Eur J Med Chem 61:26–40. doi: 10.1016/j.ejmech.2012.06.006 PubMedCrossRefGoogle Scholar
  10. 10.
    Alzate-Morales JH, Vergara-Jaque A, Caballero J (2010) Computational study on the interaction of N1 substituted pyrazole derivatives with B-Raf kinase: an unusual water wire hydrogen-bond network and novel interactions at the entrance of the active site. J Chem Inf Model 50:1101–1112. doi: 10.1021/ci100049h Google Scholar
  11. 11.
    Alzate-Morales JH, Caballero J, Vergara-Jaque A, González-Nilo FD (2009) Insights into the structural basis of \(N_2\) and \(O_6\) substituted guanine derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors: prediction of the binding modes and potency of the inhibitors by docking and ONIOM calculations. J Chem Inf Model 49:886–899. doi:  10.1021/ci8004034 PubMedCrossRefGoogle Scholar
  12. 12.
    Muñoz C, Adasme F, Alzate-Morales JH, Vergara-Jaque A, Kniess T, Caballero J (2012) Study of differences on the VEGFR2 inhibitory activities between semaxanib and SU5205 by using 3D-QSAR, docking, and molecular dynamics simulations. J Mol Graph Model 32:39–48. doi: 10.1016/j.jmgm.2011.10.005 PubMedCrossRefGoogle Scholar
  13. 13.
    Caballero J, Quiliano M, Alzate-Morales JH, Zimic M, Deharo E (2011) Docking and quantitative structure–activity relationship studies for 3-fluoro-4-(pyrrolo[2,1-f][1,2,4]triazin-4-yloxy)aniline, 3-fluoro-4-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)aniline, and 4-(4-amino-2-fluorophenoxy)-2-pyridinylamine derivatives as c-Met kinase inhibitors. J Comput Aided Mol Des 25:349–369. doi: 10.1007/s10822-011-9425-1 Google Scholar
  14. 14.
    Caballero J, Munoz C, Alzate-Morales JH, Cunha S, Gano L, Bergmann R, Steinbach J, Kniess T (2012) Synthesis, in silico, in vitro, and in vivo investigation of 5-[(1)(1)C]methoxy-substituted sunitinib, a tyrosine kinase inhibitor of VEGFR-2. Eur J Med Chem 58:272–280. doi: 10.1016/j.ejmech.2012.10.020 PubMedCrossRefGoogle Scholar
  15. 15.
    Caballero J, Zilocchi S, Tiznado W, Collina S (2012) Docking and quantitative structure–activity relationship studies for imidazo[1,2-a]pyrazines as inhibitors of checkpoint kinase-1. Med Chem Res 21:1912–1920. doi: 10.1007/s00044-011-9714-1 CrossRefGoogle Scholar
  16. 16.
    Caballero J, Alzate-Morales JH (2012) Molecular dynamics of protein kinase–inhibitor complexes: a valid structural information. Curr Pharm Des 18:2946–2963. doi: 10.2174/138161212800672705 PubMedCrossRefGoogle Scholar
  17. 17.
    Caballero J, Alzate-Morales JH, Vergara-Jaque A (2011) Investigation of the differences in activity between hydroxycycloalkyl N1 substituted pyrazole derivatives as inhibitors of B-Raf kinase by using docking, molecular dynamics, QM/MM, and fragment-based De novo design: study of binding mode of diastereomer compounds. J Chem Inf Model 51:2920–2931. doi: 10.1021/ci200306w PubMedCrossRefGoogle Scholar
  18. 18.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi: 10.1021/jm0306430 PubMedCrossRefGoogle Scholar
  19. 19.
    Schrödinger (2007) Maestro, version 9.0, 2007. Schrödinger LLC, New YorkGoogle Scholar
  20. 20.
    Saitoh M, Kunitomo J, Kimura E, Hayase Y, Kobayashi H, Uchiyama N, Kawamoto T, Tanaka T, Mol CD, Dougan DR, Textor GS, Snell GP, Itoh F (2009) Design, synthesis and structure–activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta. Bioorg Med Chem 17:2017–2029. doi: 10.1016/j.bmc.2009.01.019 PubMedCrossRefGoogle Scholar
  21. 21.
    Schrödinger (2009) Ligprep, version 2.3. Schrödinger LLC, New YorkGoogle Scholar
  22. 22.
    Todeschini R, Consonni V, Pavan M (2002) Dragon software version 2.1. Talete SRL, MilanGoogle Scholar
  23. 23.
    Hemmer MC, Gasteiger J (2000) Prediction of three-dimensional molecular structures using information from infrared spectra. Anal Chim Acta 420:145–154. doi: 10.1016/S0003-2670(00)00876-X CrossRefGoogle Scholar
  24. 24.
    Hemmer MC, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. Vib Spectr 19:151–164. doi: 10.1016/S0924-2031(99)00014-4 CrossRefGoogle Scholar
  25. 25.
    Schuur JH, Selzer P, Gasteiger J (1996) The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure–spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344. doi: 10.1021/ci950164c CrossRefGoogle Scholar
  26. 26.
    Todeschini R, Lasagni M, Marengo E (1994) New molecular descriptors for 2D and 3D structures. Theory J Chemom 8: 263–272. doi: 10.1002/cem.1180080405 Google Scholar
  27. 27.
    Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by getaway descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692. doi: 10.1021/ci015504a Google Scholar
  28. 28.
    Benfenati E, Toropov AA, Toropova AP, Manganaro A (2011) Coral software: QSAR for anticancer agents. Chem Biol Drug Des 77:471–476. doi: 10.1111/j.1747-0285.2011.01117.x PubMedCrossRefGoogle Scholar
  29. 29.
    Toropova AP, Toropov AA, Diaza RG, Benfenati E, Gini G (2011) Analysis of the co-evolutions of correlations as a tool for QSAR-modeling carcinogenicity: an unexpected good prediction based on a model that seems untrustworthy. Cent Eur J Chem 9:165–174. doi: 10.2478/s11532-010-0135-7 CrossRefGoogle Scholar
  30. 30.
    Toropov AA, Toropova AP, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines. Chem Intel Lab Syst 109:94–100. doi: 10.1016/j.chemolab.2011.07.008 CrossRefGoogle Scholar
  31. 31.
    Toropova AP, Toropov AA, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) CORAL: quantitative structure–activity relationship models for estimating toxicity of organic compounds in rats. J Comput Chem 32:2727–2733. doi: 10.1002/jcc.21848 Google Scholar
  32. 32.
    Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J, Willighagen EL (2006) The Blue ObeliskInteroperability in chemical informatics. J Chem Inf Model 46:991–998. doi: 10.1021/ci050400b Google Scholar
  33. 33.
    Cronin MTD, Schultz TW (2003) Pitfalls in QSAR. J Mol Struct THEOCHEM 622:39–51. doi: 10.1016/S0166-1280(02)00616-4 CrossRefGoogle Scholar
  34. 34.
    Fernandez M, Carreiras MC, Marco JL, Caballero J (2006) Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized genetic neural networks and ensemble averaging. J Enzyme Inhib Med Chem 21:647–661. doi: 10.1080/14756360600862366 PubMedCrossRefGoogle Scholar
  35. 35.
    Golbraikh A, Tropsha A (2002) Beware of q2!. J Mol Graph Model 20:269–276. doi: 10.1016/S1093-3263(01)00123-1 PubMedCrossRefGoogle Scholar
  36. 36.
    Roy PP, Roy K (2009) QSAR studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors. Chem Biol Drug Des 73:442–455. doi: 10.1111/j.1747-0285.2009.00791.x PubMedCrossRefGoogle Scholar
  37. 37.
    Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm2 metrics for validation of QSPR models. Chem Intel Lab Syst 107:194–205. doi: 10.1016/j.chemolab.2011.03.011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centro de Bioinformática y Simulación Molecular, Facultad de IngenieríaUniversidad de TalcaTalcaChile

Personalised recommendations