Skip to main content
Log in

Bronsted acid-catalyzed rapid enol-ether formation of 2-hydroxyindole-3-carboxaldehydes

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A one-step Bronsted acid-catalyzed synthetic methodology leading to 3-(alkoxymethylene)indolin-2-ones was developed starting from easily accessible 2-hydroxyindole-3-carboxaldehydes. The procedure simply involves a treatment of differently substituted 2-hydroxyindole-3-carboxaldehydes with various alcohols (primary/secondary/tertiary/allyl/propargyl/benzyl) in the presence of a catalytic amount of Bronsted acids such as \(p\)-toluenesulfonic acid and trifluroacetic acid. A series of 19 indolin-2-one-based enol-ethers were synthesized in excellent yields, which implies the general character of our methodology. The enol-ethers produced could be used as a useful building block for the synthesis of indole-based heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

References

  1. Shiri M (2012) Indoles in multicomponent processes (MCPs). Chem Rev 112:3508–3549. doi:10.1021/cr2003954

    Article  PubMed  CAS  Google Scholar 

  2. Inman M, Moody CJ (2013) Indole synthesis—something old, something new. Chem Sci 4:29–41. doi:10.1039/c2sc21185h

    Article  CAS  Google Scholar 

  3. Sharma V, Kumar P, Pathak D (2010) Biological importance of the indole nucleus in recent years: a comprehensive review. J Heterocycl Chem 47:491–502. doi:10.1002/jhet.349

    CAS  Google Scholar 

  4. Millemaggi A, Taylor RJK (2010) 3-Alkenyl-oxindoles: natural products, pharmaceuticals, and recent synthetic advances in tandem/telescoped approaches. Eur J Org Chem 4527–4547 doi:10.1002/ejoc.201000643

  5. Deng G, Wang Z, Song R, Zhou M, Wei W, Xie P, Li J (2011) Synthesis of 3-(aminomethylene)-2-oxoindolines by palladium-catalyzed annulation of 3-chloro-2-iodo-N-arylacrylamides with amides or amines. Chem Commun 47:8151–8153. doi:10.1039/c1cc11602a

    Article  CAS  Google Scholar 

  6. Fatima I, Ahmad I, Anis I, Malik A, Afza N (2007) Isatinones A and B, new antifungal oxindole alkaloids from Isatis costata. Molecules 12:155–162. doi:10.3390/12020155

    Article  PubMed  CAS  Google Scholar 

  7. Fatima I, Ahmad I, Nawaz SA, Malik A, Afza N, Luttfullah G, Choudhary MI (2006) Enzyme inhibition studies of oxindole alkaloids from Isatis costata. Heterocycles 68:1421–1428

    Article  CAS  Google Scholar 

  8. Toyoshima T, Mikano Y, Miura T, Murakami M (2010) Synthesis of 3,3-disubstituted oxindoles by palladium-catalyzed tandem reaction of 2-(alkynyl)aryl isocyanates with benzylic alcohols. Org Lett 12:4584–4587. doi:10.1021/ol101892b

    Article  PubMed  CAS  Google Scholar 

  9. Görmen M, Le Goff R, Lawson AM, Daïch A, Comesse S (2013) Tandem aza-Michael/spiro-ring closure sequence: access to a versatile scaffold and total synthesis of (\(\pm )\)-coerulescine. Tetrahedron Lett 54:2174–2176. doi:10.1016/j.tetlet.2013.02.047

  10. Bramson HN, Corona J, Davis ST, Dickerson SH, Edelstein M, Frye SV, Gampe RT, Harris PA, Hassell A, Holmes WD, Hunter RN, Lackey KE, Lovejoy B, Luzzio MJ, Montana V, Rocque WJ, Rusnak D, Shewchuk L, Veal JM, Walker DH, Kuyper LF (2001) Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): design, synthesis, enzymatic activities, and X-ray crystallographic analysis. J Med Chem 44:4339–4358. doi:10.1021/jm010117d

    Article  PubMed  CAS  Google Scholar 

  11. Kosuge T, Ishida H, Inaba A, Nukaya H (1985) Synthesis and some reactions of 6-bromooxindole. Chem Pharm Bull 33:1414–1418. doi:10.1248/cpb.33.1414

    Google Scholar 

  12. Kaneko C, Fujii H, Kawai S, Somei M (1978) Ring closure reaction and mechanism of 3-alkoxy-2-(2-benzamidophenyl) acrylates to 3-(\(\alpha \)-alkoxymethylene) oxindoles. Chem Lett 7:1277–1280. doi:10.1246/cl.1978.1277

    Google Scholar 

  13. Sassatelli M, Debiton E, Aboab B, Prudhomme M, Moreau P (2006) Synthesis and antiproliferative activities of indolin-2-one derivatives bearing amino acid moieties. Eur J Med Chem 41:709–716. doi:10.1016/j.ejmech.2006.03.021

    Article  PubMed  CAS  Google Scholar 

  14. Miura T, Toyoshima T, Ito Y, Murakami M (2009) Synthesis of stereodefined 3-alkylideneoxindoles by palladium-catalyzed reactions of 2-(alkynyl)aryl isocyanates with thiols and alcohols. Chem Lett 38:1174–1175. doi:10.1246/cl.2009.1174

    Article  CAS  Google Scholar 

  15. Nomura Y, Tokunaga E, Shibata N (2011) Inherent oxygen preference in enolate monofluoromethylation and a synthetic entry to monofluoromethyl ethers. Angew Chem Int Ed 50:1885–1889. doi:10.1002/anie.201006218

    Article  CAS  Google Scholar 

  16. Jha M, Blunt B (2009) Highly efficient one-pot C-, N- and O-acylation of indolin-2-one analogs. Tetrahedron Lett 50:6044–6047. doi:10.1016/j.tetlet.2009.08.057

    Article  CAS  Google Scholar 

  17. Jha M, Chou TY, Blunt B (2011) General synthesis of mono-, di-, and tri-acetylated indoles from indolin-2-ones. Tetrahedron 67:982–989. doi:10.1016/j.tet.2010.11.105

    Article  CAS  Google Scholar 

  18. Jha M, Enaohwo O, Guy S (2011) Yttrium triflate-catalyzed efficient chemoselective S-benzylation of indoline-2-thiones using benzyl alcohols. Tetrahedron Lett 52:684–687. doi:10.1016/j.tetlet.2010.11.163

    Article  CAS  Google Scholar 

  19. Jha M, Enaohwo O, Marcellus A (2009) Chemoselective S-benzylation of indoline-2-thiones using benzyl alcohols. Tetrahedron Lett 50:7184–7187. doi:10.1016/j.tetlet.2009.10.050

    Article  CAS  Google Scholar 

  20. Jha M, Guy S, Chou T (2011) Microwave assisted synthesis of indole-annulated dihydropyrano 3,4-c chromene derivatives via hetero-Diels–Alder reaction. Tetrahedron Lett 52:4337–4341. doi:10.1016/j.tetlet.2011.06.052

    Article  CAS  Google Scholar 

  21. Trost BM, Stiles DT (2007) Total synthesis of spirotryprostatin B via diastereoselective prenylation. Org Lett 9:2763–2766. doi:10.1021/ol070971k

    Article  PubMed  CAS  Google Scholar 

  22. Zhang PW, Liu RY, Cook JM (1995) Regiospecific bromination of 3-methylindoles with N-bromosuccinimide. Tetrahedron Lett 36:3103–3106. doi:10.1016/0040-4039(95)00478-u

    Article  CAS  Google Scholar 

  23. Kuo C, Wang C, Fang H, Raju BR, Kavala V, Habib PM, Yao C (2009) An efficient method for the N-bromosuccinimide catalyzed synthesis of indolyl-nitroalkanes. Molecules 14:3952–3963. doi:10.3390/molecules14103952

    Article  PubMed  CAS  Google Scholar 

  24. Karimi B, Ebrahimian GR, Seradj H (1999) Efficient and chemoselective conversion of carbonyl compounds to 1,3-dioxanes catalyzed with N-bromosuccinimide under almost neutral reaction conditions. Org Lett 1:1737–1739. doi:10.1021/ol9909987

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by Natural Sciences and Engineering Research Council of Canada (NSERC), Nipissing University, and the Canada Foundation for Innovation (CFI) to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukund Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, D., Cameron, T.S. & Jha, M. Bronsted acid-catalyzed rapid enol-ether formation of 2-hydroxyindole-3-carboxaldehydes. Mol Divers 17, 827–834 (2013). https://doi.org/10.1007/s11030-013-9470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9470-x

Keywords

Navigation