Molecular Diversity

, Volume 17, Issue 2, pp 221–243 | Cite as

Design, synthesis and biological evaluation of indolizine derivatives as HIV-1 VIF–ElonginC interaction inhibitors

  • Wenlin Huang
  • Tao Zuo
  • Hongwei Jin
  • Zhenming Liu
  • Zhenjun Yang
  • Xianghui Yu
  • Liangren ZhangEmail author
  • Lihe Zhang
Full-Length Paper


The HIV-1 viral infectivity factor (VIF) protein is essential for viral replication. VIF recruits cellular ElonginB/C-Cullin5 E3 ubiquitin ligase to target the host antiviral protein APOBEC3G (A3G) for proteasomal degradation. Thus, the A3G-Vif–E3 complex represents an attractive target for the development of novel anti-HIV drugs. In this study, we describe the design and synthesis of indolizine derivatives as VIF inhibitors targeting the VIF–ElonginC interaction. Many of the synthesized compounds exhibited obvious inhibition activities of VIF-mediated A3G degradation, and 5 compounds showed improvement of activity compared to the known VIF inhibitor VEC-5 (1) with IC\(_{50 }\) values about 20 \(\upmu \)M. The findings described here will be useful for the development of more potent VIF inhibitors.


VIF–ElonginC interaction inhibition VEC-5 Anti-HIV-1 Indolizine derivatives Structure-activity relationship 



This work was supported by the National Natural Science Foundation of China (20972009).

Supplementary material

11030_2013_9424_MOESM1_ESM.pdf (7.8 mb)
Supplementary material 1 (PDF 7967 KB)
11030_2013_9424_MOESM2_ESM.doc (587 kb)
Supplementary material 2 (DOC 587 KB)


  1. 1.
    U.S. Food and Drug Administration (2012) Drugs used in the treatment of HIV infection. Silver Spring, MD. Accessed 17 August 2012
  2. 2.
    D’Aquila RT, Schapiro JM, Brun-Vezinet F, Clotet B, Conway B, Demeter LM, Grant RM, Johnson VA, Kuritzkes DR, Loveday C, Shafer RW, Richman DD (2003) Drug resistance mutations in HIV-1. Topics in HIV medicine. The international AIDS society, USA 11:92–96Google Scholar
  3. 3.
    Richman DD, Morton SC, Wrin T, Hellmann N, Berry S, Shapiro MF, Bozzette SA (2004) The prevalence of antiretroviral drug resistance in the United States. AIDS 18:1393–1401Google Scholar
  4. 4.
    Ross L, Lim ML, Liao Q, Wine B, Rodriguez AE, Weinberg W, Shaefer M (2007) Prevalence of antiretroviral drug resistance and resistance-associated mutations in antiretroviral therapy-naive HIV-infected individuals from 40 United States cities. HIV Clin Trials 8:1–8. doi: 10.1310/hct0801-1 Google Scholar
  5. 5.
    Adamson CS, Freed EO (2010) Novel approaches to inhibiting HIV-1 replication. Antivir Res 85:119–141. doi: 10.1016/j.antiviral.2009.09.009 PubMedCrossRefGoogle Scholar
  6. 6.
    Greene WC, Debyser Z, Ikeda Y, Freed EO, Stephens E, Yonemoto W, Buckheit RW, Este JA, Cihlar T (2008) Novel targets for HIV therapy. Antivir Res 80:251–265. doi: 10.1016/j.antiviral.2008.08.003 Google Scholar
  7. 7.
    Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809Google Scholar
  8. 8.
    Lecossier D, Bouchonnet F, Clavel F, Hance AJ (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300:1112. doi: 10.1126/science.1083338 PubMedCrossRefGoogle Scholar
  9. 9.
    Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103. doi: 10.1038/nature01709 PubMedCrossRefGoogle Scholar
  10. 10.
    Izumi T, Shirakawa K, Takaori-Kondo A (2008) Cytidine deaminases as a weapon against retroviruses and a new target for antiviral therapy. Mini Rev Med Chem 8:231–238PubMedCrossRefGoogle Scholar
  11. 11.
    Takumi K, Katsumi M, Shuhei K, Masaki M, Daisuke K, Ronald CC, Joan WC, Keiichil N (2004) VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Gene Dev 18:3055–3065. doi: 10.1101/gad.1252404 Google Scholar
  12. 12.
    Mehle A, Thomas ER, Rajendran KS, Gabuzda D (2006) A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 281:17259–17265. doi: 10.1074/jbc.M602413200 Google Scholar
  13. 13.
    Fujita M, Akari H, Sakurai A, Yoshida A, Chiba T, Tanaka K, Strebel K, Adachi A (2004) Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation. Microbes Infect/Institut Pasteur 6:791–798. doi: 10.1016/j.micinf.2004.04.011 CrossRefGoogle Scholar
  14. 14.
    Xiao Z, Ehrlich E, Yu Y, Luo K, Wang T, Tian C, Yu XF (2006) Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 349:290–299. doi: 10.1016/j.virol.2006.02.002 PubMedCrossRefGoogle Scholar
  15. 15.
    Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, Yu XF, Xiong Y (2008) Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. J Virol 82:8656–8663. doi: 10.1128/JVI.00767-08 PubMedCrossRefGoogle Scholar
  16. 16.
    Nathans R, Cao H, Sharova N, Ali A, Sharkey M, Stranska R, Stevenson M, Rana TM (2008) Small-molecule inhibition of HIV-1 Vif. Nat Biotech 26:1187–1192. doi: 10.1038/nbt.1496 CrossRefGoogle Scholar
  17. 17.
    Cen S, Peng ZG, Li XY, Li ZR, Ma J, Wang YM, Fan B, You XF, Wang YP, Liu F, Shao RG, Zhao LX, Yu L, Jiang JD (2010) Small molecular compounds inhibit HIV-1 replication through specifically stabilizing APOBEC3G. J Biol Chem 285:16546–16552. doi: 10.1074/jbc.M109.085308 PubMedCrossRefGoogle Scholar
  18. 18.
    Fan G, Li Z, Shen S, Zeng Y, Yang Y, Xu M, Bruhn T, Bruhn H, Morschhauser J, Bringmann G, Lin W (2010) Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorg Med Chem 18:5466–5474. doi: 10.1016/j.bmc.2010.06.052 Google Scholar
  19. 19.
    Idrees Mohammed MKP, Jiang X, Sharova N, Singh G, Stevenson M, Rana TM (2012) SAR and lead optimization of an HIV-1 VIF-APOBEC3G axis inhibitor. ACS Med Chem Lett 3:465–469. doi: 10.1021/ml300037k Google Scholar
  20. 20.
    Zuo T, Liu D, Lv W, Wang X, Wang J, Lv M, Huang W, Wu J, Zhang H, Jin H, Zhang L, Kong W, Yu X (2012) Small-molecule inhibition of human immunodeficiency virus type 1 replication by targeting the interaction between Vif and ElonginC. J Virol 86:5497–5507. doi: 10.1128/JVI.06957-11 Google Scholar
  21. 21.
    Lv W, Liu Z, Jin H, Yu X, Zhang L (2007) Three-dimensional structure of HIV-1 VIF constructed by comparative modeling and the function characterization analyzed by molecular dynamics simulation. Org Biomol Chem 5:617–626. doi: 10.1039/b612050d Google Scholar
  22. 22.
    Vemula V, Vurukonda S, Bairi C (2011) Indolizine derivatives: recent advances and potential pharmacological activities. Int J Pharm Sci Rev Res 11:159–163Google Scholar
  23. 23.
    Singh GS, Mmatli EE (2011) Recent progress in synthesis and bioactivity studies of indolizines. Eur J Med Chem 46:5237–5257. doi: 10.1016/j.ejmech.2011.08.042 PubMedCrossRefGoogle Scholar
  24. 24.
    Wang BX, Liu WW, He T, Hu HW (2006) Oxidant promoted 1, 3-dipolar cycloaddition of pyridinium ylides to chalcones for preparation of 1-benzoyl-2-arylindolizines. Chin J Chem 24:279–281CrossRefGoogle Scholar
  25. 25.
    Gomez O, Salgado-Zamor H, Reyes A, Campos ME (2011) A revised approach to the synthesis of 3-acyl imidazo [1,2-a] pyridines. Heterocycl Comm 16:99–104Google Scholar
  26. 26.
    Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, Yu XF, Xiong Y (2008) Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. J Virol 82:8656–8663PubMedCrossRefGoogle Scholar
  27. 27.
    Marcsisin SR, Engen JR (2010) Molecular insight into the conformational dynamics of the Elongin BC complex and its interaction with HIV-1 Vif. J Mol Biol 402:892–904PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wenlin Huang
    • 1
  • Tao Zuo
    • 2
  • Hongwei Jin
    • 1
  • Zhenming Liu
    • 1
  • Zhenjun Yang
    • 1
  • Xianghui Yu
    • 2
    • 3
  • Liangren Zhang
    • 1
    Email author
  • Lihe Zhang
    • 1
  1. 1.State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University BeijingChina
  2. 2.National Engineering Laboratory for AIDS Vaccine, College of Life ScienceJilin UniversityChangchunChina
  3. 3.Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life ScienceJilin UniversityChangchunChina

Personalised recommendations